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Exact thermodynamics for weakly interacting normal-phase quantum gases:
Equations of state for all partial waves
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While the thermodynamics for bosonic systems with weak s-wave interactions has been known for decades,
a general and systematic extension to higher partial waves has not yet been reported. We provide closed-form
expressions for the equations of state for weakly interacting systems with arbitrary partial waves in the normal
phase. Thermodynamics, including contact, loss rate, and compressibility, are derived over the entire temperature
regime. Our results offer an improved thermometer for ultracold atoms and molecules with weak high-partial
wave interactions.
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I. INTRODUCTION

The equations of state (EOS) for ideal noninteracting Bose
and Fermi gases are standard textbook results [1] that are of
immense importance to cold atom experiments. For exam-
ple, temperatures of weakly interacting quantum gases are
frequently extracted by fitting experimental data to noninter-
acting density profiles. While weak interactions modify the
noninteracting density profile only slightly, recent molecular
quantum gas experiments [2–11] suggest that the chemical
reaction rate is comparatively sensitive to the interactions even
in the weak-interaction limit. The reason is that the contact
[12–28], which is the thermodynamic variable that governs
the chemical rate in the weakly interacting regime [29–33],
changes from zero for noninteracting systems to a finite value
for interacting systems.

This article is devoted to the EOS of single-component
Bose and Fermi gases with weak interactions in the nor-
mal phase. The EOS is well understood and available in an
analytical form for single-species bosons with weak s-wave
interactions [34]. In contrast, for single-component Fermi
gases with weak p-wave interactions, the contacts and EOS
have only been studied in the low- and high-temperature
regimes [32,33,35], even though higher partial-wave physics
has attracted increased attention recently [36–39]. Analytical
expressions for the EOS of single-component gases beyond
the s-wave case (i.e., for p-wave Fermi gases, d-wave Bose
gases, and f -wave Fermi gases, etc.)—applicable over the
entire temperature regime—do not exist.
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Within the Hartree-Fock framework, we derive analytical
closed-form expressions for the EOS, applicable to all tem-
peratures, of single-component atomic or molecular quantum
gases with weak l-wave interactions in the normal phase.
We calculate the contact, which determines the chemical re-
action rate of ultracold gases. Using the virial expansion,
we find that, while the contact of weakly interacting s-wave
Bose gases in the normal phase is a pure two-body quan-
tity, that of weakly interacting p-wave Fermi gases displays
pronounced three-body effects even at temperatures as high
as the degeneracy temperature. This effect is shown to arise
from many-body dressing, i.e., the emergence of quasipar-
ticles at leading order in the interaction strength. We also
discuss the relation between the resulting reaction rate and
that obtained through a simple thermal average over the
inelastic cross-section. Applying the local-density approxima-
tion (LDA), we calculate the contacts of the harmonically
trapped systems. Our results show that the trapped system
needs to be cooled to rather low temperatures to probe the
“low-temperature” portion of the EOS of the homogeneous
system.

The article is arranged as follows: Sec. II introduces the
l-wave low-energy two-body interaction potential employed
in Sec. III to derive the normal-phase l-wave EOS in the
weak-interaction limit. Section IV applies the EOS of the ho-
mogeneous system to deduce explicit, yet general, expressions
for the two-body contact and two-body loss rate coefficient,
which are interpreted using the virial expansion (see Sec. V).
Section VI focuses on the homogeneous l = 0 and l = 1 sys-
tems. The loss rate coefficients derived in this work are com-
pared with heuristic thermal averages in Sec. VII. Section VIII
applies the homogeneous EOS to harmonically trapped
systems using the LDA. Finally, Sec. IX discusses the applica-
bility regime of the theory results derived in this work, while
Sec. X concludes. Technical details are relegated to several
Appendices.
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II. INTERACTION MODEL

The low-energy two-body potential for arbitrary partial-
wave channel l reads

Ul (q, q′) = 4πgl q
l (q′)l

l∑
m=−l

Ylm(q̂)Y ∗
lm(q̂′), (1)

where Ylm(q̂) is the spherical harmonic, and q and q′ are
the incoming and outgoing relative momenta [40]. The two-
body phase shifts δl are given by k2l+1 cot(δl ) = −1/al +
O(k2), where al is the scattering length in the lth partial-
wave channel. To describe the binding energy of shallow
two-body bound states, the leading-order effective-range cor-
rection needs to be included, and δl needs to be expanded up
to order k2 [41]. However, effective-range corrections can be
excluded since we work in a weakly interacting regime where
bound states do not contribute. A standard renormalization
procedure gives (see Appendix A)

1

gl
= M

4π h̄2al
+ M

2π2h̄2

∫ ∞

0
dqq2l . (2)

Noticing that since we are using first-order perturbation theory
where ultraviolet divergencies are absent, renormalization is
not required, implying that the bare coupling gl and scattering
length al are related by gl = 4π h̄2al/M, where M denotes
the mass of the gas constituents (atoms or molecules). For
l = 0, the interaction U0 is, as expected, equal to g0 [42]. The
next section uses the interaction potential Ul (q, q′) to derive
perturbative results for the normal-phase EOS.

III. EQUATIONS OF STATE IN NORMAL PHASE

To include the two-body interactions in the EOS, we ac-
count for the mean-field corrections to the Bose-Einstein
distribution function (l even) and Fermi-Dirac distribution
function (l odd) in momentum space [42],

nk =
{

exp

[
ε

(0)
k + h̄�l (k)

kBT

]
z−1 ∓ 1

}−1

, (3)

where ε
(0)
k = h̄2k2/2M denotes the single-particle kinetic en-

ergy, h̄�l (k) the self-energy, and h̄k the momentum. In
Eq. (3) and in what follows, the upper sign is for even
l (single-component bosons) and the lower sign for odd l
(single-component fermions). The self-energy reads

�l (k) = 2

h̄
(2π )−3

∫
d3k′Ul

(
k − k′

2
,

k − k′

2

)
nk′ , (4)

from which we can obtain the normal-phase grand potential �

by the “generalized Hellman-Feynman theorem” [42]

� − �(0) = V

2

∫ 1

0

dλ

λ

∫
d3k

(2π )3
h̄�l (k, λ)nk(λ), (5)

where nk(λ) and �(k, λ) are defined through Eqs. (3) and (4)
with the two-body potential Ul (q, q′) scaled by λ1. Here

�(0) = ∓kBTV
Li5/2(±z)

λ3
T

(6)

1Namely, nk(λ) = [exp (
ε

(0)
k +h̄�l (k,λ)

kBT )z−1 ∓ 1]
−1

and �l (k, λ) =
2
h̄ (2π )−3

∫
d3k′λUl ( k−k′

2 , k−k′
2 )nk′ (λ).

is the noninteracting grand potential, where

λT = h̄

√
2π

MkBT

is the thermal wavelength and z is the fugacity. At the leading
order in the scattering length, we find

�

kBTV
≈ ∓

Li 5
2
(±z)

λ3
T

+ al

λ2l+4
T

∑
i, j,n

i+ j+n=l

C(i, j, n, l )

× Li 2i+n+3
2

(±z)Li 2 j+n+3
2

(±z), (7)

where the indices i, j, and n start from 0, and

C(i, j, n, l ) = (2l + 1)π l−1 [1 + (−1)n]2n+2l!

i! j!n!(1 + n)

× �

(
2i + n + 3

2

)
�

(
2 j + n + 3

2

)
. (8)

Here Lis and � are the polylogarithm and gamma functions,
respectively. To construct the full EOS, the mean particle den-
sity n needs to be expressed in terms of z. We achieve this by
treating the self-energy as a small parameter and integrating
Eq. (3) in momentum space:

n = ±
Li 3

2
(±z)

λ3
T

− 2al

λ2l+4
T

∑
i, j,n

i+ j+n=l

C(i, j, n, l )

× Li 2i+n+1
2

(±z)Li 2 j+n+3
2

(±z). (9)

One can check that Eqs. (7) and (9) fulfill the thermody-
namic relation n = − 1

V
∂�
∂μ

= −z ∂ (�/kBTV )
∂z , where μ denotes

the chemical potential. Equations (7) and (9) are the first main
result of this article. From Eqs. (7) and (9), one can—at least
formally—calculate all thermodynamic quantities. Fully ana-
lytical expressions for the isothermal compressibility, entropy,
and isochoric heat capacity are given in Appendix B.

IV. CONTACT AND TWO-BODY LOSS

In addition to the observables considered in Appendix B,
we consider the contact Cl , which is conjugate to the inverse
scattering length. The contact has been discussed extensively
for the two-component Fermi gas at unitary [15–21]. Working
in the grand-canonical ensemble, where the fugacity z is a
thermodynamic variable, Cl is defined in terms of the grand
potential � by the adiabatic relation

(2l + 1)h̄2Cl

2M
= − ∂�

∂a−1
l

. (10)

This definition of Cl generalizes the definition of the p-
wave contact C1 [24]. For s-wave interacting Bose gases, the
most commonly employed definition of the contact C0 differs
from Eq. (10) by a factor of 2π [12–14]. The description
of higher-partial wave systems typically requires a second
contact, namely the conjugate to the effective range [23–27].
Since we find that it affects the thermodynamics of weakly
interacting systems at sub-leading order, we exclude it from
our discussion.
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The contact of weakly interacting systems is a fascinating
thermodynamic quantity since it determines the loss rate due
to chemical reactions between two particles. Examples of
reactions in molecular NaRb and KRb gases are as follows:

NaRb + NaRb → Na2 + Rb2 (s-wave Bose gas)

KRb + KRb → K2 + Rb2 (p-wave Fermi gas)

When the two incoming reactants are “scattered” into final
products, the (typically large) binding energy is converted to
the kinetic energy of the products. Consequently, the prod-
ucts have so much energy that they are not held in place
by the comparatively shallow trapping potential. Since the
reaction time is short compared to the typical time scale of
experimental observations, a non-Hermitian Hamiltonian with
a complex interaction potential can effectively describe the
process. For the single-component p-wave gas, it was shown
that the change of the number N of constituents is related to
the imaginary part of the scattering length [33],

dN

dt
= 4

h̄
〈Im(H )〉 = 4

h̄

∂�

∂a1

∣∣∣∣
z

Im(a1), (11)

where H is the effective Hamiltonian with complex interac-
tion and 〈·〉 denotes the thermal average. Since the derivation
in Ref. [33] was done in real space, without making any
assumptions about the form of the interaction, the result
can be straightforwardly generalized to arbitrary partial-wave
channels:

dN

dt
= 4

h̄

∂�

∂al

∣∣∣∣
z

Im(al ). (12)

From Eq. (11) and the definition of the contact, Eq. (10), one
obtains

dn

dt
= 2(2l + 1)

h̄

M

Cl

V

Im(al )

[Re(al )]2
= −βl n

2, (13)

where n denotes the particle density; the loss-rate coefficient
βl can be measured experimentally [43–45]. The loss-rate co-
efficient characterizes—due to the n2 term—losses that arise
from two-body processes. In general, though, the loss-rate
coefficient may be n-dependent, implying that dn/dt may
effectively scale with n3 or n to some other power.

Combining the EOS and the definition of the contact, we
find the contact in the canonical ensemble:

Cl (z)

V
= 4π [Re(al )]2

(2l + 1)λ2l+6
T

∑
i, j,n

i+ j+n=l

C(i, j, n, l )

× Li 2i+n+3
2

(±z(0) )Li 2 j+n+3
2

(±z(0) ), (14)

where the fugacity z(0) of the noninteracting system is implic-
itly determined by Li3/2(±z(0) ) = ±nλ3

T . Equation (14) and
its interpretation and implications (see below) are the second
main result of this paper.

V. VIRIAL EXPANSION ANALYSIS

To unravel how the many-body thermodynamics emerges
from the two-body scattering length and few-body corre-
lations, we employ the virial expansion, which provides a
systematic expansion in terms of one-, two-, three-, and

higher-body clusters [1]. Formally, we expand � in terms of
the fugacity z,

� = −kBT Z1

∞∑
j=1

b jz
j, (15)

where Z1 = V/λ3
T is the canonical partition function for a

single constituent in a box with volume V . The determination
of the virial coefficient b j requires information up to the
canonical partition function Zj for j constituents [46], i.e.,
b j contains one-, two-, · · · , j-body physics; Zj with j > 1
accounts for interactions as well as exchange statistics. Since
we have an analytical expression for �, the virial coefficients
b j can be calculated analytically up to arbitrarily large j by
Taylor expanding Eq. (7) around z = 0. We provide expres-
sions for �b j = b j − (±1) j−1

j5/2 up to j = 4:

�b1 = 0,

�b2 = − al

λ2l+1
T

∑
i, j,n

i+ j+n=l

C(i, j, n, l ),

�b3 = ∓ al

λ2l+1
T

∑
i, j,n

i+ j+n=l

C(i, j, n, l )2− 1+2i+n
2 ,

�b4 = − al

λ2l+1
T

∑
i, j,n

i+ j+n=l

C(i, j, n, l )
[
2−3−l + 2 × 3− 3+2i+n

2
]
,

(16)

The expressions for �b j will be interpreted below. The
following section applies the l-wave result for Cl to two
commonly investigated systems, namely s-wave Bose (in this
case, our virial coefficients agree with the literature [47]) and
p-wave Fermi gases.

VI. HOMOGENEOUS SYSTEMS

A. Single-component s-wave Bose gas

The contact C0 for the weakly interacting single-
component Bose gas, applicable to any temperature T above
the transition temperature TC , is directly proportional to n2:

C0

V
= 8π [Re(a0)]2

λ6
T

{Li 3
2
[z(0)]}2 = 8π [Re(a0)]2n2. (17)

Since the quantity n2 can be interpreted as the semiclassical
pair density, the thermodynamic variable C0 is a two-body
quantity in the weak-interaction limit; in other words, many-
body dressing is absent. As a consequence, the corresponding
loss-rate coefficient β0 is independent of n,

β0 = −16π h̄Im(a0)

M
. (18)

Even above degeneracy, two-body chemical reactions of the
weakly interacting single-component s-wave gas do not ex-
hibit three- or higher-body correlations. This behavior can be
traced back to how the self-energy modifies the momentum
distribution Eq. (3). At the mean-field level, the s-wave inter-
actions lead to a self-energy �0 that is independent of k, i.e.,
�0(k) = �0 (see Appendix B 1). According to Eq. (3), the
interactions can thus be interpreted as modifying the chemical
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potential without modifying the character of the constituents,
i.e., the constituents remain free particles, and each two-
body collision involves exactly two “physical” constituents.
The virial expansion formalism can further confirm the in-
terpretation. By self-consistently calculating the contact with
truncated virial expansion at j, we find that j = 2 is enough
to produce the exact results and that choosing a higher j does
not introduce new terms (see Appendix C).

B. Single-component p-wave Fermi gas

Setting l = 1 in Eq. (14), we find

C1

V
= −24Re(a1)2π2

λ5
T

nLi 5
2
[−z(0)]. (19)

Since the polylogarithm on the right-hand side of Eq. (19) has
the index 5/2 as opposed to 3/2, the polylogarithm cannot,
contrary to the s-wave case, be directly converted to n. Con-
sequently, C1 features a nontrivial dependence on n and T . At
high temperatures (z(0) → 0), Eq. (19) becomes

Cl=1(n)

V
T →∞−−−→ −24[Re(a1)]2π2

λ2
T

n2. (20)

In this regime, the contact C1 has—similarly to the contact
C0—a two-body nature. However, unlike in the s-wave case,
the high-temperature p-wave contact has an explicit temper-
ature dependence. Since λ−2

T is directly proportional to T ,
C1 increases linearly with temperature, i.e., reactions become
slower as the gas is getting colder. The corresponding β1 at
high temperatures is independent of n and linearly dependent
on T ,

β1
T →∞−−−→ −72πkBT Im(a1)

h̄
. (21)

In the zero temperature limit, Eq. (19) approaches

Cl=1(n)

V
T →0−−→ 12

5
62/3π7/3[Re(a1)]2n8/3. (22)

Appendix D discusses how to evaluate the zero-temperature
limits of some of the functions that enter into the l = 1 EOS.
Since the n dependence deviates from n2, β1 is n dependent,

β1
T →0−−→ −144π

5

kBTF

h̄
Im(a1), (23)

where TF = h̄2

2M (6π2n)2/3 denotes the Fermi temperature. The
black solid line in Fig. 1 shows Eq. (19) as a function of T/TF .
The T 1 and T 0 scalings in the high- and low-temperature
regimes fully agree with previous works [32,33].

To interpret the change of the dependence of C1 from being
proportional to n2/3 at low temperatures to being proportional
to n2 at high temperatures, we first note that p-wave interact-
ing gases may exist in the normal phase approximately all the
way down to zero temperature since the superfluid transition
temperature is exponentially small [40]. It is then natural to
assume that many-body effects will modify the reaction rate
in the low-temperature limit as the incoming and outgoing
momenta are expected to be constrained due to the fermionic
exchange statistics, i.e., intuitively, one expects some dress-
ing of the constituents due to many-body effects. A careful
analysis of the self-energy confirms this picture. Substituting

FIG. 1. Contact (or two-body loss-rate coefficient), both in
scaled dimensionless form, for single-component p-wave gas as a
function of scaled temperature. The solid line shows Eq. (19); dotted,
dashed, and dash-dotted lines show the second-, third-, and fourth-
virial expansions. Inset (i): Extension to larger T/TF , illustrating that
the second-order virial expansion converges to the exact result at
relatively high temperatures. Inset (ii): Contact for—from bottom to
top at T = TC/F —p-wave (black), d-wave (cyan), s-wave (yellow),
and f -wave (magenta).

�1(k) = A1 + B1k2 (see Appendix B 1) into Eq. (3), the con-
stant A1 can be shown to modify, just as in the s-wave case,
the chemical potential. The B1k2 term, in contrast, modifies
the single-particle energies ε

(0)
k , thereby effectively renormal-

izing the mass of the physical constituents. When a chemical
reaction happens at low temperatures, two quasiparticles with
effective mass interact instead of two physical constituents.
Since the renormalization of the mass is due to many-body
dressing, the chemical reaction involves more than two phys-
ical constituents.

The above analysis is complemented by the virial ex-
pansion up to the fourth order in z. Figure 1 compares the
contact C1, calculated up to second, third, and fourth or-
der, with the exact result, Eq. (19). Figure 1 shows that the
second-order expansion agrees with the exact expression at
T 
 TF [see inset (i)]. Importantly, the second-order virial
expansion deviates notably from the exact result for temper-
atures as high as T/TF = 2. The third-order virial expansion
provides an excellent description down to T/TF ≈ 0.25. In-
terestingly, the fourth-order virial expansion does not yield
much improvement over the third-order expansion, indicating
that three-body processes are essential in chemical reactions
of weakly interacting p-wave gases for T/TF ≈ 0.25–2. At
higher temperatures, three-body processes contribute very lit-
tle. At lower temperatures, the chemical reactions acquire
many-body characteristics.

Extending the analysis to higher partial waves, we find that
the Cl for l > 1 also have non-negligible three-body contri-
butions in the vicinity of the degeneracy temperature (TC for
even l and TF for odd l). In the high-T limit, Cl is directly
proportional to T l ; this scaling is consistent with the two-
particle Bethe-Wigner threshold law [50–52]. The inset (ii)
of Fig. 1 plots our analytical expressions for Cl for l = 0 − 3
as a function of temperature.
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TABLE I. Comparison between results from Eqs. (30) and (29) up to l = 3.

Heuristic thermal average [Eq. (30)] Thermodynamics [Eq. (29)]

s −16π h̄Im(a0)/M −16π h̄Im(a0 )/M

p
−144π 2 h̄Im(a1)Li 5

2
[−z(0)]

Mλ2
T Li 3

2
[−z(0)]

−144π 2 h̄Im(a1)Li 5
2
[−z(0)]

Mλ2
T Li 3

2
[−z(0)]

d
−1200π 3 h̄Im(a2)Li 7

2
[z(0)]

Mλ4
T Li 3

2
[z(0)]

−600π 3 h̄Im(a2)Li 7
2
[z(0)]

Mλ4
T Li 3

2
[z(0)]

+
−600π 3 h̄Im(a2)Li 5

2
[z(0)]2

Mλ4
T Li 3

2
[z(0)]2

f
−11760π 4 h̄Im(a3)Li 9

2
[−z(0)]

Mλ6
T Li 3

2
[−z(0)]

−2940π 4 h̄Im(a3)Li 9
2
[−z(0)]

Mλ6
T Li 3

2
[−z(0)]

+
−8820π 4 h̄Im(a4)Li 5

2
[−z(0)]Li 7

2
[−z(0)]

Mλ6
T Li 3

2
[−z(0)]2

VII. STATISTICAL AVERAGE OF INELASTIC
CROSS SECTION

In the literature, the loss-rate coefficients βl have been
calculated by thermally averaging the two-body inelastic cross
sections σin,l (E ). In what follows, we review the steps taken
within this approach to derive βl [53–55]. According to the
definition of the scattering length al for the lth partial-wave
channel, namely k2l+1 cot(δl ) = −1/al , the scattering matrix
element Sl in the low-energy threshold limit reads

Sl = e2iδl ≈ [1 + 2Im(al )k
2l+1] − 2Re(al )k

2l+1i. (24)

The inelastic partial-wave cross section σin,l is related to the
scattering matrix element through [56–59]

σin,l = (2l + 1)π
1 − |Sl (k)|2

k2
, (25)

where the factor 2l + 1 originates from the fact that the lth
partial-wave channel has a (2l + 1)-fold degeneracy. Assum-
ing |Im(al )|k2l+1 � 1 and |Re(al )|k2l+1 � 1, we find

|Sl |2 ≈ [1 + 2Im(al )k
2l+1]2 ≈ 1 + 4Im(al )k

2l+1. (26)

Utilizing the definition of the scattering energy E = h̄2k2/2μ,
where μ = M/2 is the two-body reduced mass, one obtains

σin,l (E ) = −4π (2l + 1)Im(al )(ME )l−1/2/h̄2l−1. (27)

The loss-rate coefficient βl is then found by thermally aver-
aging the two-body inelastic cross section σin,l (E ) over the
Boltzmann distribution function [53–55]:

βl = 2 ×
∫∞

0 dE
√

Ee−E/kBT σin,l (E )
√

4E/M∫∞
0 dE

√
Ee−E/kBT

= −25+lπ1/2+l�(3/2 + l )
h̄

Mλ2l
T

Im(al ), (28)

where the factor 2 reflects that one inelastic collision process
eliminates two particles. Since Eq. (28) employs the Boltz-
mann distribution function, it is instructive to compare it with
the high-temperature limit of the expression for βl derived
in this work within the thermodynamic formalism. Our exact

result and its high-temperature limit read

βl = − 8π h̄

Mλ2l
T

∑
i, j,n

i+ j+n=l

C(i, j, n, l )

×
Li 2i+n+3

2
[±z(0)]Li 2 j+n+3

2
[±z(0)]

Li 3
2
[±z(0)]Li 3

2
[±z(0)]

Im(al ),

T →∞−−−→ − 8π h̄

Mλ2l
T

⎛
⎜⎝ ∑

i, j,n
i+ j+n=l

C(i, j, n, l )

⎞
⎟⎠Im(al ). (29)

It can be checked that Eq. (29) agrees with Eq. (28) for each
partial wave channel. This can be understood because the
two particles’ center-of-mass and relative momenta obey the
Boltzmann distribution separately.

At lower temperatures, however, the thermal average
needs to be generally performed over the product of two
Bose-Einstein or two Fermi-Dirac distribution functions (the
three-body analog is discussed in Ref. [60]). Since the product
of two such distribution functions does not, unlike in the case
of the Boltzmann distribution function, separate in relative
and center-of-mass coordinates, the thermal-average approach
does not straightforwardly extend to the low-temperature
regime. By naively replacing the classical Boltzmann distribu-
tion with the quantum version (Bose-Einstein or Fermi-Dirac
distribution), Eq. (28) becomes

βl
?= 2 ×

∫∞
0 dE

√
E (eE/kBT z−1 ∓ 1)−1σin,l (E )

√
4E/M∫∞

0 dE
√

E (eE/kBT z−1 ∓ 1)−1
.

(30)
The question mark over the equal sign indicates that the ex-
pression is not rigorous but instead, deduced heuristically. The
integral in Eq. (30) can be evaluated analytically, and the re-
sults for l = 0–3 are reported in the second column of Table I.
Curiously, a comparison of the thermal-average approach and
our exact results (third column of Table I) shows that the
heuristic thermal-average approach does yield the same ex-
pressions for l = 0 and l = 1 as the rigorous thermodynamic
framework developed in this work. For the higher partial wave
channels (l = 2 and l = 3), however, the heuristic approach
yields a different temperature dependence. The correction of
the heuristic expressions of the loss rate coefficient constitutes
the third main result of this paper.
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FIG. 2. Normal-phase contacts, in scaled dimensionless units,
for harmonically trapped (a) s-wave Bose and (b) p-wave Fermi
gas. The gray-shaded region in (a) denotes the Bose-Einstein con-
densate (BEC) phase where our calculation does not apply. The
exact results (solid lines) are compared with the virial expansions
up to fourth order (see legend). Here T trap

C = [N/ζ (3)]1/3 h̄ω/kB [48]
(T trap

F = (6N )1/3 h̄ω/kB [49]) is the transition (Fermi) temperature
of the noninteracting trapped Bose [Fermi] gas; ζ (s) denotes the
Riemann Zeta function, and ktrap

C and ktrap
F denote the momentum

scales of the corresponding energy scales.

VIII. HARMONICALLY TRAPPED SYSTEMS

We now apply our results to harmonically trapped N-
particle systems, which are being studied extensively exper-
imentally. To account for the trap-induced inhomogeneity
of the density, we convert our homogeneous EOS, namely
Eqs. (7) and (9), to those for the trapped system via the LDA
[61]. Within this framework, the local density at position r
determines the EOS of the homogeneous system to be used
at that point: �trap = ∫

d3r�[n(r)]/V. To obtain the contact
Ctrap

l of the trapped system, Eq. (10) is evaluated numeri-
cally. The black solid lines in Fig. 2 show the result for a
spherically symmetric harmonic trap with angular frequency
ω. To gain physical insight, the EOS of the inhomogeneous
system can be described through the virial expansion. In an
isotropic harmonically trapped system, the relation between
the virial coefficients btrap

j of the trapped system and those of

the homogeneous system is btrap
j = b j/ j3/2 [46]. The explicit

description of the thermodynamics of harmonically trapped
single-component gases with weak interactions and the inter-
pretation thereof (see below) constitute the fourth main result
of this paper.

Figures 2(a) and 2(b) compare the contacts of the harmon-
ically trapped s-wave Bose and p-wave Fermi gas, obtained
from the virial expansion up to fourth order, with the full
numerical results. We make two observations: (i) For the s-
wave Bose gas, the contact of the trapped system does not
coincide with the second-order virial expansion, indicating
that the contact of the trapped system is not, unlike that of the
homogeneous system, a two-body quantity. This is because
each position in the trap has a distinct local self-energy. Corre-
spondingly, the fugacity of the trapped system cannot be inter-
preted as a globally shifted fugacity of the noninteracting gas.
(ii) The second-order viral expansion for the p-wave system
works quite well at T ∼ T trap

F ; apparently, three-body correc-
tions play a rather small role near the degeneracy temperature.
The two-body (high-temperature) approximation works better
for the inhomogeneous system than the homogeneous system
since the former is much hotter than the latter for the same
scaled temperature (e.g., T/T trap

F = 1 and T/TF = 1 corre-
spond to z ≈ 0.17 and z = 0.98, respectively). This validates
previous works on loss processes of harmonically trapped p-
wave systems [32,33]. Finally, we note that while the adiabatic
relation, Eq. (10), holds for the trapped system, the relation
between the loss rate and the contact differs from that for
the homogeneous system since the loss-rate coefficient of the
trapped system is not only governed by particles being lost
from the trap but also by a so-called deformation effect [33].

IX. VALIDITY REGIME OF THE THEORY BASED ON b2

The results presented in this paper employ the mean-field
framework and expansions applicable to the weakly interact-
ing regime. It is thus natural to ask what the validity regime
of the theory is and whether the theory covers the operating
regime of typical state-of-the-art experiments.

The applicability regime can be estimated using the virial
EOS of the homogeneous system that accounts for the second-
order virial coefficient. At this level, the virial EOS can be
analytically tackled for an arbitrary interaction strength. The
virial EOS up to b2 allows us to obtain exact reference results
that can be used to assess the accuracy of Eq. (7). To facilitate
the comparison, we compare the second-order virial coeffi-
cient b2, obtained within the mean-field framework, directly
with its exact counterpart.

We consider the s-wave Bose and p-wave Fermi gases as
examples. Their exact b2 are

bbose
2 =

⎧⎪⎨
⎪⎩

1
4
√

2
+ 2

√
2 exp

(− 2
ã2

s T̃

) − √
2 exp

(
2

ã2
s T̃

)
erfc

(√
2
T̃

1
ãs

)
ãs > 0

1
4
√

2
+ √

2 exp
(

2
ã2

s T̃

) + √
2 exp

(
2

ã2
s T̃

)
erf

(√
2
T̃

1
ãs

)
ãs < 0

, (31)

where ãs is equal to askC and T̃ is equal to T/TC , and

bfermi
2 = − 1

4
√

2
+ 3

√
2 exp

(
2

T̃ |ṽp|2/3

)
− 6

√
2 exp

(
− 1

T̃ |ṽp|2/3

)
cos

( √
3

T̃ |ṽp|2/3

)
−

48 1F3
[
1; 5

6 , 7
6 , 3

2 ; 8
27T̃ 3ṽ2

p

]
√

π T̃ 3/2ṽp
, (32)

where ṽp is equal to vpk3
F and T̃ is equal to T/TF . erf, erfc, and

pFq denote the error, complementary error, and generalized
hypergeometric functions, respectively. Equations (31) and

(32) are obtained from the Beth-Uhlenbeck formula [46]. The
expressions are expected to apply to relatively large |ãs| or
|ṽp|. In writing Eq. (32), we ignored the contribution from the
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FIG. 3. Validity regime determined by comparing the mean-field bmf
2 and the exact b2. Left panel: s-wave Bose gas. Right panel: p-wave

Fermi gas. The heatmaps show the value of the exact b2 [Eqs. (31) and (32)]; the color scheme is defined in the bars that are shown to the right
of the main panels. The gray-shaded areas denote the parameter regime for which |b2 − bmf

2 |/|b2| � 0.05. A normalized difference below 5%
is interpreted as an indicator that the theory framework developed in this work is applicable.

shallow bound state, i.e., we assumed that the effective range
is infinitely large. Using Eq. (16), the second-order mean-field
level virial coefficients, extracted from the EOS for l = 0 and
l = 1 derived in this work, read

bbose,mf
2 = 1

4
√

2
− ãsT̃√

π
, (33)

bfermi,mf
2 = − 1

4
√

2
− 9T̃ 3/2ṽp

4
√

π
. (34)

Figure 3 shows the virial coefficients bbose
2 (left panel)

and bfermi
2 (right panel) as functions of the reduced inter-

action strength and reduced temperature. If the normalized
difference |b2 − bmf

2 |/|b2| between the mean-field coefficient
and the exact virial coefficient is small, then the mean-field
treatment is expected to provide a faithful description. The
gray-shaded area in Fig. 3 demarcates the parameter combi-
nations for which the normalized difference |b2 − bmf

2 |/|b2|
between the mean-field virial coefficient and the exact virial
coefficient is smaller than 0.05. A difference below 5% is in-
terpreted as indicating that the mean-field description provides
an accurate description of the system. At T̃ � 2, which is typ-
ical for experiments, the normalized difference is smaller than
5% for |ãs| � 0.15 and |ṽp| � 0.1 for the s-wave Bose gas
and p-wave Fermi gas, respectively. For lower values of T̃ , the
validity regime of the mean-field treatment extends, according
to our criteria, to larger reduced interaction strengths. We cau-
tion that—even though the validity regime, as determined by
|b2 − bmf

2 |/|b2|—is quite large for temperatures that are much
lower than the degeneracy temperature, Fig. 3 may not accu-
rately reflect the validity regime of the full EOS. The reason
is that the virial expansion fails at these low temperatures for

which the fugacity is large (in this regime, virial coefficients
other than b2 come into play). We expect the “true” validity
range for the mean-field EOS to be comparable to that at
temperatures notably above the transition temperature.

Ultracold molecular gas experiments typically work with
samples that are characterized by extremely weak interac-
tions, which are thus expected to be well described by the
theory developed in this work. Table II shows three exam-
ples: one for a s-wave Bose gas and two for p-wave Fermi
gases. The molecular gas is loaded into an approximately
harmonic trap in the experiments. We use the typical densities
reported in the experimental works [11,45,62] to calculate the
reduced interaction strength and subsequently calculate the
transition temperature TC and Fermi temperature TF assuming
that the systems are homogeneous. Table II shows that the re-
duced interaction strength is well within the parameter regime
where the mean-field-based theory developed in this work is
applicable.

X. CONCLUSION

In summary, we theoretically derived the EOS for single-
component normal-phase quantum gases, which can be used
to obtain all thermodynamic quantities. We focused on the
behavior of the contact of two commonly produced systems—
s-wave Bose and p-wave Fermi gases. We showed that the
contact is purely a two-body quantity in the former system and
exhibits many-body characteristics in the latter. We analyzed
the behavior of the p-wave contact in the near-degenerate
regime and found that the three-body contribution plays a vital
role. The discussion was extended to harmonically trapped
systems, where we analyzed the contacts under the LDA.

TABLE II. Species used in molecular gas experiments, their statistics, their interaction strength, and their reduced interaction strength.

Molecule Statistics Interaction strength Reduced interaction strength

87Rb 133Cs [62] Boson as ≈ 233a0 [62] ãs ≈ 0.02
40K 87Rb [45] Fermion vp ≈ (118a0 )3 [63] ṽp ≈ 1.44 × 10−5

23Na 40K [11] Fermion vp ≈ (88a0 )3 [11] ṽp ≈ 2.39 × 10−7

033173-7



XIN-YUAN GAO, D. BLUME, AND YANGQIAN YAN PHYSICAL REVIEW RESEARCH 6, 033173 (2024)

Our study provides critically needed guidance for recent
ultracold molecular gas experiments, i.e., for weakly inter-
acting molecules in the deeply degenerate regime where the
virial expansion fails. Specifically, our results can be used to
calibrate loss rate and temperature measurements. Moreover,
our results also apply to single-component Fermi gases such
as 6Li and 40K [64,65], and provide a reference for studying
crossover from weakly to strongly interacting systems.
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APPENDIX A: BARE COUPLING
AND SCATTERING LENGTH

To obtain the relation between the bare couplings gl and the
scattering lengths al for each partial wave channel l , we follow
the standard renormalization procedure, i.e., we compare the
T -matrix element Tl (k, k′) and the partial wave scattering
amplitude fl [61]:

− MV

4π h̄2 Tl (k, k′) = (2l + 1) fl (k)Pl (cos θ ), (A1)

where

fl (k) = 1

k cot δl (k) − ik
. (A2)

In Eq. (A1), M, V , and k denote the mass of the constituent,
volume, and relative wave vector, respectively. Pl is the Legen-
dre polynomial of degree l . The T -matrix elements are defined
by the Schwinger-Dyson equation [66]

Tl (k1, k2) =Ul (k1, k2) + V
∫

d3qUl (k1, q)

× 1
h̄2k2

2
M − h̄2q2

M + iε
Tl (q, k2), (A3)

where ε has an infinitesimally small positive real value that
ensures retarded propagation. Making use of the form of inter-
action in the main text, Eq. (A3) can be worked out explicitly:

Tl (k1, k2) = 4πgl

V

l∑
m=−l

kl
1kl

2Ylm(k̂1)Y ∗
lm(k̂2)

×
[

1 + gl

2π2

∫
dq

q2l+2

h̄2k2

M − h̄2q2

M + iε
+ · · ·

]
.

(A4)

We find that the infinite sum inside the square brackets forms
a geometric sequence of the form 1 + c + c2 + · · · , where c
is equal to the second term in square brackets in the last line

of Eq. (A4). Hence, we can write

Tl (k1, k2) =
4π
V

∑l
m=−l kl

1kl
2Ylm(k̂1)Y ∗

lm(k̂2)
1
gl

− 1
2π2

∫∞
0 dq q2l+2

h̄2k2
M − h̄2q2

M +iε

. (A5)

Because of energy conservation, the magnitudes of k1 and
k2 should be the same. Setting |k1| = |k2| = k, denoting the
angle between k1 and k2 by θ , and using the addition theorem

Pl (k̂1 · k̂2) = 4π

(2l + 1)

l∑
m=−l

Ylm(k̂1)Y ∗
lm(k̂2) (A6)

of spherical harmonics, we obtain

Tl (k1, k2) = (2l + 1)Pl (cos θ )
V

k2l gl
− V

2k2l π2

∫∞
0 dq q2l+2

h̄2k2
M − h̄2q2

M +iε

. (A7)

Combining Eq. (A1) and the definition of the partial-wave
phase shifts δl (k), we get

1

gl
− 1

2π2

∫ ∞

0
dq

q2l+2

h̄2k2

M − h̄2q2

M + iε
= M

4π h̄2al
+ iMk2l+1

4π h̄2 .

(A8)
The integral on the left-hand side of Eq. (A8) diverges. It
can be reexpressed using the well-known low-energy relation
[66]:

1

2π2

∫ ∞

0
dq

q2l+2

h̄2k2

M − h̄2q2

M + iε

= M

2π2h̄2

∫ ∞

0
dqP q2l+2

k2 − q2

− iπM

2π2h̄2

∫ ∞

0
dqq2l+2δ(k2 − q2)

k→0−−→ − M

2π2h̄2

∫ ∞

0
dqq2l + iMk2l+1

4π h̄2 , (A9)

where P denotes the Cauchy principal value. Using Eq. (A9)
in Eq. (A8), we finally obtain the renormalization condition
Eq. (2). It is known that the derived renormalization condition
cannot eliminate all diverging terms that may arise in the
many-body treatment of the single-species bosonic system,
especially when the interaction is strong [67]. For example, in
single-component bosonic systems, Efimov physics requires
one to introduce an additional parameter for renormalization
[68]. However, since the lowest-order mean-field interactions
dominate the many-body physics for the weakly interacting
systems of interest in this work, the renormalization condition
is not needed to eliminate divergencies, i.e., we can use the
nonintegral part of the bare coupling constant.

APPENDIX B: DETAILS OF CALCULATION
ON THERMODYNAMICS

1. Self-energy and grand potential

Substituting Eq. (1) into Eq. (4), the self-energy is found
explicitly to be

h̄�l (k) = 21−2l (2l + 1)

π

h̄2al

M

∫ ∞

0
dk′nk′ (k′)2

×
∫ π

0
dθ |k − k′|2l sin(θ ), (B1)
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where θ denotes the angle between k and k′. To proceed, we
work in the weakly interacting limit and assume that nk is
equal to the noninteracting distribution functions n(0)

k ,

n(0)
k =

{
exp

[
ε

(0)
k

kBT

]
z−1 ∓ 1

}−1

, (B2)

Inserting Eq. (B2) into Eq. (B1), we note that the θ depen-
dence only appears in the term |k − k′|2l . To evaluate the
integral over θ , the usual binomial theorem for scalars cannot
be applied to |k − k′|2l . Instead, we first take the square and
then construct a series expansion using the trinomial theorem
[69]:

|k − k′|2l = [k2 + (k′)2 − 2k · k′]l

=
∑
i, j,n

i+ j+n=l

l!

i! j!n!
(−2)nk2i+n(k′)2 j+n cosn θ, (B3)

where the indices i, j, and n each go from 0 to l . Letting, as
before, the angle between k and k′ be θ and using∫ π

0
cos(θ )n sin(θ )dθ = 1 + (−1)n

1 + n
, n = 0, 1, 2, 3, . . . ,

(B4)
we have

h̄�l (k)
|al k

2l+1
F |�1−−−−−−→ 21−2l (2l + 1)

π

h̄2al

M

×
∑
i, j,n

i+ j+n=l

l!

i! j!n!
2n 1 + (−1)n

1 + n
k2i+n

×
∫

dk′n(0)
k′ (k′)2 j+n+2. (B5)

Using the integral expression of the polylogarithm function,∫
dqn(0)

q q j = ±2
j−1
2

(
MkBT

h̄2

) j+1
2

�

(
j + 1

2

)
Li j+1

2
(±z),

(B6)
the self-energy becomes

h̄�l (k) ≈ ± 2l + 1

π

h̄2al

M
2

3
2 −2l

×
∑
i, j,n

i+ j+n=l

l!

i! j!n!

1 + (−1)n

1 + n
k2i+n2 j+ 3n

2

× �

(
2 j + n + 3

2

)(
MkBT

h̄2

) 2 j+n+3
2

Li 2 j+n+3
2

(±z).

(B7)

Equation (B7) reveals the structure of the self-energy for the
lth partial-wave channel clearly: �l (k) = �l (k) is a poly-
nomial of even degree in k (see the factor of k2i+n in the
summand) since 2i is always even and the summand is zero
when n is odd. For example, �0 = A0 for the s-wave channel,
�1 = A1 + B1k2 for the p-wave channel, �2 = A2 + B2k2 +
C2k4 for the d-wave channel, etc., where Al , Bl , and Cl are
constants that depend on the temperature T .

Since �l (k, λ) is directly proportional to λ and al [see
Eq. (B7)] and since nk(λ) has no dependence on λ at leading

order [nk(λ) ≈ n(0)
k ], the leading-order modification of the

grand potential based on Eq. (5) is given by

� − �(0) ≈ V

4π2

∫
dkk2 h̄�l (k)n(0)

k . (B8)

Using Eqs. (B5) and (B6), we arrive at Eq. (7) in the main text.
For convenience, we list the explicit expressions of Eq. (7)

from the main text for l = 0 to l = 3:

�0

kBTV
= −Li5/2(z)

λ3
T

+ 2a0[Li3/2(z)]2

λ4
T

(s-wave, Bose gas),

(B9)

�1

kBTV
= Li5/2(−z)

λ3
T

+ 18πa1Li3/2(−z)Li5/2(−z)

λ6
T

(p-wave, Fermi gas), (B10)

�2

kBTV
= − Li5/2(z)

λ3
T

+ 75π2a2[Li5/2(z)]2

λ8
T

+ 75π2a2Li3/2(z)Li7/2(z)

λ8
T

(d-wave, Bose gas),

(B11)

�3

kBTV
= Li5/2(−z)

λ3
T

+ 2205π3a3Li5/2(−z)Li7/2(−z)

2λ10
T

+ 735π3a3Li3/2(−z)Li9/2(−z)

2λ10
T

( f -wave, Fermi gas). (B12)

2. Isothermal compressibility

This section considers the isothermal compressibility,
which is defined through

κT = z

kBT

∂n

∂z
. (B13)

In terms of the grand potential �, we find

κT = − z

NkBT

∂ (�/kBT )

∂z
− z2

NkBT

∂2(�/kBT )

∂z2
. (B14)

Using Eq. (7), we find the isothermal compressibility in terms
of the fugacity:

κT = ± Li1/2(±z)

nkBT λ3
T

− 2

nkBT λ3
T

al

λ2l+1
T

l∑
i, j,n

i+ j+n=l

C(i, j, n, l )

×
[

Li 2i+n+1
2

(±z)Li 2 j+n+1
2

(±z)

+ Li 2i+n−1
2

(±z)Li 2 j+n+3
2

(±z)

]
. (B15)

This expression is not yet in the “standard form” of the com-
pressibility, as it depends on the fugacity (a thermodynamic
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variable in the grand-canonical potential) rather than the den-
sity (a thermodynamic variable in the canonical ensemble). To
convert z to n, we use the Gibbs-Duhem relation

n = −z
∂ (�/kBTV )

∂z
. (B16)

We know that n is equal to ±Li3/2(±z(0) )/λ3
T at leading order.

If we write z in terms of z(0), z = z(0) + δz, then we find to
first order,

δz
(|al |/λ2l+1

T → 0
)

= ±z0
2al

λ2l+1
T

∑
i, j,n

i+ j+n=l

C(i, j, n, l )

× Li 2i+n+1
2

[±z(0)]Li 2 j+n+3
2

[±z(0)]/Li1/2[±z(0)]. (B17)

Substituting z = z(0) + δz into Eq. (B15), we have

nkBT κT = ± Li1/2[±z(0)]

λ3
T

− 2al

λ2l+4
T

∑
i, j,n

i+ j+n=l

C(i, j, n, l )

× {
Li 2i+n+1

2
[±z(0)]Li 2 j+n+1

2
[±z(0)]

+ Li 2i+n−1
2

[±z(0)]Li 2 j+n+3
2

[±z(0)]

− Li− 1
2 [±z(0)]Li 2i+n+1

2
[±z(0)]

× Li 2 j+n+3
2

[±z(0)]/Li 1
2
[±z(0)]

}
. (B18)

The explicit expressions for l = 0 and l = 1 read

nkBT κT = Li1/2[z(0)]

λ3
T

− 4a0{Li1/2[z(0)]}2

λ4
T

for l = 0,

nkBT κT = − Li1/2[−z(0)]

λ3
T

+ 54πa1nLi1/2[−z(0)]

λ3
T

+ 18πa1n2Li−1/2[−z(0)]

Li1/2[−z(0)]
for l = 1. (B19)

The divergence of the compressibility of the bosonic s-wave
system indicates the Bose-Einstein condensate (BEC) transi-
tion. The first equation of Eqs. (B19) diverges at z(0) = 1 or
T = TC , i.e., the BEC transition temperature of the nonin-
teracting system. The argument extends to Bose gases with
higher partial-wave interactions because Lis(x) diverges at
x = 1 for all s, s � 1. It is worthwhile pointing out that TC

does, in fact, have a correction of order n1/3a0, which arises
from higher-order fluctuations that are not captured by the
mean-field approach considered here [34].

3. Entropy and isochoric heat capacity

This section determines the isochoric heat capacity. We
start with the entropy, which is defined through

S = − ∂�

∂T

∣∣∣∣
μ

= −
(

∂�

∂T

∣∣∣∣
z

+ ∂�

∂z

∣∣∣∣
T

∂z

∂T

∣∣∣∣
μ

)

= − ∂�

∂T

∣∣∣∣
z

+ z ln(z)

T

∂�

∂z

∣∣∣∣
T

. (B20)

To obtain the entropy in the canonical ensemble in terms of n
and T , we change z to z(0) and keep terms up to first order in
al/λ

2l+1
T :

S = kBV

2λ3
T

{±5Li5/2[±z(0)] ∓ 2 ln[z(0)]Li3/2[±z(0)]
}

+ kBVal

λ2l+4
T

∑
i, j,n

i+ j+n=l

C(i, j, l, n)
{
3Li3/2[±z(0)]

× Li 2i+n+1
2

[±z(0)]Li 2 j+n+3
2

[±z(0)]/Li 1
2
[±z(0)]

− (l + 3)Li 2i+n+3
2

[±z(0)]Li 2 j+n+3
2

[±z(0)]
}
. (B21)

It can be noted that the entropy for l = 0 is quite special since
it is independent of a0. After simplification, we find that the
entropy of the weakly interacting s-wave Bose gas is identical
to that of the noninteracting Bose gas:

Sl=0 = kBV

2λ3
T

{
5Li5/2[z(0)] − 2 ln[z(0)]Li3/2[z(0)]

}
. (B22)

The independence of a0 is a consequence of the fact that
the s-wave mean-field interaction simply shifts the chemical
potential, making the interacting system resemble a noninter-
acting gas. The p-wave interactions, in contrast, modify the
entropy of the noninteracting system:

Sl=1 = kBV

2λ3
T

{−5Li5/2[−z(0)] + 2 ln[z(0)]Li3/2[−z(0)]
}

+ kBV

λ3
T

27πa1{Li 3
2
[−z(0) )}3

λ3
T Li 1

2
[−z(0)]

− kBV

λ3
T

45πa1Li 3
2
[−z(0)]Li 5

2
[−z(0)]

λ3
T

. (B23)

We can now calculate the isochoric heat capacity directly from
the entropy,

CV = T
∂S

∂T

∣∣∣∣
n

= T
∂λT

∂T

[
∂S

∂λT

∣∣∣∣
z(0)

+ ∂S

∂z(0)

∣∣∣∣
λT

∂z(0)

∂λT

∣∣∣∣
n

]

= −λT

2

{
∂S

∂λT

∣∣∣∣
z(0)

± 3nλ2
T z(0)

Li 1
2
[±z(0)]

∂S

∂z(0)

∣∣∣∣
λT

}
. (B24)

Explicitly, the expression is

CV = kBV

λ3
T

{
±

15Li 5
2
[±z(0)]

4
∓ 9n2λ6

T

4Li 1
2
[±z(0)]

}

− kBVal

2λ2l+4
T

∑
i, j,n

i+ j+n=l

C(i, j, n, l )

{Li 1
2
[±z(0)]}3

× [
2(l2 + 5l + 6)

{
Li 1

2
[±z(0)]

}3

× Li 2i+n+3
2

[±z(0)]Li 2 j+n+3
2

[±z(0)] + 9n2λ6
T Li 1

2
[±z(0)]

× {Li 2i+n+1
2

[±z(0)]Li 2 j+n+1
2

[±z(0)]

+ Li 2i+n−1
2

[±z(0)]Li 2 j+n+3
2

[±z(0)]}
− (

9n2λ6
T Li− 1

2
[±z(0)]
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∓ 3(4l + 7)nλ3
T

{
Li 1

2
[±z(0)]

}2)
× Li 2i+n+1

2
[±z(0)]Li 2 j+n+3

2
[±z(0)]

]
. (B25)

Consistent with the discussion above, one can check that the
weakly interacting s-wave system has the same CV as the cor-
responding noninteracting system. In contrast, the isochoric
heat capacity of the weakly interacting p-wave gas contains a
correction due to the interactions.

APPENDIX C: CALCULATION OF CONTACTS VIA
TRUNCATED VIRIAL SERIES

This work uses the virial expansion, truncated at order j,
to analyze the j-body contribution to the contact and other
thermodynamic quantities. A crucial point of the derivations is
to consistently account for terms that contribute to the j-body
physics. In particular, this implies that higher-order terms that
go beyond j-body physics need to be excluded.

We start from the general virial expansion in the
grand-canonical ensemble, truncated at order j, � =
−kBT Z1

∑ j
i=1 bizi. Here Z1 denotes the one-body partition

function for an as-of-yet unspecified system (could be the
homogeneous or inhomogeneous system). Using the standard
thermodynamics relation N = −z ∂ (�/kBT )

∂z , we find

N = Z1

j∑
i=1

ib jz
i. (C1)

From the expression for N and the definition of the contact,
it is straightforward to calculate the contact in the grand-
canonical ensemble at order j:

Cl (z) = −2kBT M[Re(al )]2Z1

(2l + 1)h̄2

j∑
i=1

∂bi

∂al
zi. (C2)

In what follows, we are interested in the contact in the canoni-
cal ensemble. To convert Eq. (C2) from the grand canonical
to the canonical ensemble, we need to express z in terms
of N . This is achieved by applying the Lagrange inversion
theorem (see Sec. 3.6.6 of Ref. [70]) to Eq. (C1). To obtain
the forth-order results presented in the main text, we need to
include terms up to the fourth power of N ,

z = b1N

Z1
− 2b2N2

Z2
1

+
(
8b2

2 − 3b3
)
N3

Z3
1

+
( − 40b3

2 + 30b2b3 − 4b4
)
N4

Z4
1

. (C3)

When substituting Eq. (C3) into Eq. (C2) and working at order
j, one needs to truncate all terms at order N j . Even though the
z2 term, e.g., generates terms that scale as N2, . . . , N8, only
the terms proportional to N2, N3, and N4 are kept to obtain
consistent forth-order results. The results reported below are
obtained by additionally taking, consistent with the weak in-
teraction regime assumption, the |al |/λ2l+1

T → 0 limit.
The above-mentioned strategy is critical for determining

that the homogeneous system’s s-wave contact has a pure
two-body character. If we—incorrectly so—kept all terms in
N when going from the grand canonical to the canonical

ensemble, then we would obtain

C0 =8π [Re(a0)]2

V
N2 (exact result)

C0
?=8π [Re(a0)]2

V
N2 − 16π5/2 h̄3[Re(a0)]2

(MkBT )3/2V 2
N3

+
{

40π4h̄6[Re(a0)]2

(MkBT )3V 3
− 128π4h̄6[Re(a0)]2

3
√

3(MkBT )3V 3

}
N4

+ O(N5) (truncated at j = 2)

C0
?=8π [Re(a0)]2

V
N2

+
{

−8π4h̄6[Re(a0)]2

(MkBT )3V 3
− 128π4h̄6[Re(a0)]2

3
√

3(MkBT )3V 3

}
N4

+ O(N5) (truncated at j = 3)

C0
?=8π [Re(a0)]2

V
N2 + O(N5) (truncated at j = 4).

(C4)

Converting the above expressions to expressions that use kC =
( 8π3/2

ζ (3/2)
N
V )1/3 and TC = h̄2k2

C
2MkB

[implying N = M3/2ζ (3/2)V
2
√

2π3/2 h̄3 T 3/2
C ], it

can be observed that this approach yields inconsistent results
with regards to the order of N :

C0

N[Re(a0)]2k3
C

= ζ (3/2)√
π

(exact result)

C0

N[Re(a0)]2k3
C

= ζ (3/2)√
π

− ζ (3/2)2

√
2π

√
T 3

C

T 3

+ ζ (3/2)3

8
√

π

T 3
C

T 3

+ O[(TC/T )9/2] (truncated at j = 2)

C0

N[Re(a0)]2k3
C

= ζ (3/2)√
π

+ ζ (3/2)3

8
√

π

T 3
C

T 3

− 2ζ (3/2)3

3
√

3π

T 3
C

T 3

+ O[(TC/T )9/2] (truncated at j = 3)

C0

N[Re(a0)]2k3
C

= ζ (3/2)√
π

+ O[(TC/T )9/2]

(truncated at j = 4). (C5)

On the other hand, when following the correct approach that
consistently keeps terms up to order N j , we find:

C0 =8π [Re(a0)]2

V
N2 (exact result)

C0 =8π [Re(a0)]2

V
N2 (truncated at j = 2)

C0 =8π [Re(a0)]2

V
N2 (truncated at j = 3)

C0 =8π [Re(a0)]2

V
N2 (truncated at j = 4). (C6)
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Again, in units of kC and TC , we find:

C0

N[Re(a0)]2k3
C

= ζ (3/2)√
π

(exact result)

C0

N[Re(a0)]2k3
C

= ζ (3/2)√
π

(truncated at j = 2)

C0

N[Re(a0)]2k3
C

= ζ (3/2)√
π

(truncated at j = 3)

C0

N[Re(a0)]2k3
C

= ζ (3/2)√
π

(truncated at j = 4). (C7)

The analysis above leads to the following important conclu-
sion: When one includes terms up to j = 2, the s-wave result
is exact; contributions from larger clusters do not lead to any
corrections.

APPENDIX D: ZERO-TEMPERATURE LIMIT
IN FERMIONIC SYSTEMS

The main text characterizes weakly interacting
single-component systems in the normal phase. This
Appendix provides limiting expressions for several quantities
of fermionic systems in the T/TF → 0 limit. In the T/TF → 0
limit, it is computationally inefficient to evaluate expressions
that explicitly or implicitly contain polylogarithm functions
numerically. The reason is that the direct use of T = 0
yields expressions like Lis(−∞) cannot be evaluated
numerically. Instead, it is generally more convenient to
use asymptotic analytic expressions. The large-argument
asymptote of fermionic-type polylogarithm functions
is [71]

−Lis(−x)
x→+∞−−−−→ [ln(x)]s

�(s + 1)
. (D1)

Correspondingly, one finds

−Lis1

[
Li−1

s2
(−x)

] x→+∞−−−−→ [�(1 + s2)x]s1/s2

�(1 + s1)
, (D2)

where −1 denotes the inverse function. Direct application of
Eq. (D2) to the homogeneous system yields

C1

N[Re(a1)]2k5
F

T →0−−→ 2

5π
,

C3

N[Re(a3)]2k9
F

T →0−−→ 4

45π
. (D3)

One also needs to change the integration limits accordingly for
harmonically trapped systems. To illustrate this, we consider
the p-wave system. The exact integral for the contact is

Ctrap
1

N[Re(a1)]2
(
ktrap

F

)5 =
∫ ∞

0
dr̄

18T̄ 4

π
r̄2Li3/2

[ − e− r̄2

T̄ z(0)
]

× Li5/2
[ − e− r̄2

T̄ z(0)
]
, (D4)

where T̄ = T/T trap
F and r̄ = r/RF . Here RF =

(48N )1/6√h̄/Mω denotes the Thomas-Fermi radius.
Utilizing Eq. (D1) to simplify the integrand, we find
18T̄ 4

π
r̄2Li3/2[−e− r̄2

T̄ z(0)]Li5/2[−e− r̄2

T̄ z(0)] → 64r̄2(r̄2−1)4

5π2 , which
shows that the integrand vanishes at r̄ = 1. This is consistent
with the LDA, where the density goes to zero at r = RF .
Since the density of the cloud is zero for r > RF , the
upper limit of the integration can be changed from r̄ = ∞
to r̄ = 1,

Ctrap
1

N[Re(a1)]2
(
ktrap

F

)5

T →0−−→
∫ 1

0
dr̄

64r̄2(r̄2 − 1)4

5π2
= 8192

17325π2
.

(D5)
We note that our work does not rule out the existence of

other phases in the extremely low-temperature regime. If, e.g.,
a BCS phase existed, then the BCS transition temperature
would be exponentially small in the weakly interacting regime
(|al |k2l+1

F � 1) considered in this work. Evaluating the low-
temperature normal-phase behavior would still be justified
by considering the limiting T/TF → 0 expressions discussed
above.
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