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Two-body inelastic collisions arising from chemical reactions are prevalent in ultracold fermionic and
bosonic molecular gases. Although recent advancements have achieved quantum degeneracy in these
systems, loss dynamics are typically modeled phenomenologically using rate equations that often assume
thermalization during chemical reactions. In this study, we employ the inelastic quantum Boltzmann
equation to analyze particle loss, temperature evolution, and momentum distributions in single-component
Fermi gases from first principles. Our results demonstrate that the conventional particle-number rate
equation accurately describes the dynamics in trapped systems but fails to capture the behavior in
homogeneous systems. Notably, under pure p-wave inelastic collisions and zero elastic collisions, we find
that systems prepared near or above quantum degeneracy remain in a thermal state, whereas systems
initialized deep within degeneracy exhibit nonequilibrium dynamics. Our theoretical predictions align well
with recent experimental observations in trapped systems, and our claim can be further verified in atomic
systems with induced two-body loss in box potentials.
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Introduction—In classical hydrodynamic theory, dissi-
pation, which originates from the inelastic collisions
between particles and leads to heating, has been extensively
studied in granular fluids [1–5]. Correspondingly, similar
dissipative phenomena have also been observed in the
quantum regime. A vital feature of ultracold molecular
gases—one of the candidates for quantum simulation
[6–13] and quantum computation [14–17]—is their two-
body losses due to either chemical reactions or light-
assisted chemical reaction, which are intrinsic to both
fermions [18–23] and bosons [24–29].
After the preparation of the dissipative ultracold molecu-

lar systems, it has been observed that the system can be
fitted with thermal profiles, with a gradually increasing
temperature. This process has been dubbed antievaporation
[30,31]. While the system appears thermal and the temper-
ature dynamics can be modeled using phenomenological
rate equations [26,27,32–36], it is not yet fully clear
whether the system stays in a genuine thermal state under
a long-time dissipation. For single-component bosonic
systems with inelastic s-wave interactions, where the
potential has no momentum dependence in Fourier space,
particles with different momenta are removed at the same
rate, leaving the shape of momentum distribution
unchanged. Conversely, for single-component fermionic
systems with inelastic p-wave interactions, the intrinsic
momentum dependence of the interaction leads to particles
with different momenta being removed at different rates.

Thus, two-body p-wave loss could push the system out of
thermal equilibrium and lead to exotic physics.
We now focus on single-component fermions with p-

wave interactions. Although local thermal equilibrium
could be assumed for classicial fluids, this may not be
the case for ultracold molecules. It has been verified that a
molecular gas could be thermalized with atom-molecule
collision [37], and theories assuming a thermalized density
matrix remain valid in a short time window [38–41].
However, thermal equilibrium may not last a long time
for a pure fermionic molecular quantum gas because the
relaxation time (e.g., several minutes [42]) could be much
longer than the characteristic two-body decay time (sec-
onds). This seemingly forbids thermal equilibrium in long-
term dynamics. There have been numerical studies of long-
term dynamics using Lindblad equations [43,44], yet
agreement with experiments has not been achieved under
typical experimental parameters.
This Letter attempts to address the fate of thermalization

for single-component Fermi gases with two-body p-wave
inelastic loss at finite temperatures by analyzing the long-
time dynamics from first principles. (i) We solve the
inelastic quantum Boltzmann equation in the zero and
infinitely fast elastic collision limit for systems in harmonic
and box potentials. (ii) For harmonically trapped systems,
our theory reproduces the long-time dynamics in experi-
ments without any fitting parameter. We find that the
solution almost agrees with the conventional two-body
particle-number decay equation for harmonically trapped
systems at high initial temperatures. (iii) In box traps, we
obtain analytical (numerical) decay dynamics for arbitrary*Contact author: yqyan@cuhk.edu.hk
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initial temperatures in the zero (strong) elastic collision
limit and predict an unconventional particle-number decay
equation that could be tested in ultracold atomic
experiments.
Model—To describe a weakly interacting and reactive

single-component Fermi gas, we begin with the single-
channel p-wave non-Hermitian interaction:

Û ¼ 3g
2V

X

P;q;q0
q · q0c†P

2
þq
c†P

2
−qcP

2
−q0cP

2
þq0 ; ð1Þ

with coupling strength g ¼ 4πℏ2½ReðvpÞ þ i ImðvpÞ�=M
derived from the low-energy p-wave phase shift:
k3 cotðδpÞ ¼ −1=vp þOðk2Þ. Here, we neglected higher
order contributions such as the effective range as its
contribution to loss is small in typical experimental con-
ditions [41]. The model is a direct generalization of s-wave
complex contact interaction [45]. Here, vp, M, and V are
the complex p-wave scattering volume vp, the particle
mass, and the system’s volume, respectively, and ck is the
fermionic annihilation operator following the canonical
anticommutation relation. By expanding the dynamics of
hNki ¼ hc†kcki up to the second order of the interaction
[42], we obtain the inelastic Boltzmann equation that
governs the dynamics of a homogeneous system:

dnk=dt ¼ I inel½nkV�=V þ Iel½nkV�=V; ð2Þ

where nkðtÞ ¼ hNkiðtÞ=V is the momentum distribution
function and I inel½nkV� and Iel½nkV� are the inelastic and
elastic collision integrals, respectively. Specifically, the
inelastic collision integral is given by

I inel½nkV� ¼
12πℏ ImðvpÞV2

M

Z
d3q
ð2πÞ3 ðq

2 þ k2Þnknq; ð3Þ

and the form of the elastic collision integral I el½nk� can be
found in the companion paper [42]. For application to
typical molecular Fermi gas in experiments, I el can be
safely ignored because the relaxation time is much longer
than other time scales in the system [42]. Equation (3) has
also been derived by Ref. [44] using a two-channel model.
Similar forms of inelastic collision integrals can also be
obtained in strongly interacting Bose gases with two-body
losses in 1D [46–48].
To accurately model ultracold gas experiments, which

are predominantly conducted in harmonic traps, we
adapt Eq. (2) using the local-density approximation
nkV → fðk; rÞ, where fðk; rÞ represents the phase space
density. In addition to elastic and inelastic collisions, the
inhomogeneity prompts the cloud to flow. The inelastic
Boltzmann equation in harmonic traps governing the
complete set of dynamics is thus

df
dt

¼
�
−
ℏk ·∇r

M
þ∇rUext ·∇k

ℏ

�
f þ I inel½f� þ I el½f�; ð4Þ

where UextðrÞ ¼
P

i¼x;y;z Mω2
i r

2
i =2 is the external har-

monic trapping potential, with ωi denoting the trapping
angular frequencies in the three spatial directions.
We analyze two limiting scenarios: (i) zero elastic

collisions, where dynamics are governed purely by inelastic
processes, and (ii) infinitely fast elastic collisions (thermal
ansatz), where momentum redistribution is instantaneous,
maintaining thermal equilibrium. For typical experiments
where elastic relaxation times far exceed loss times [42],
scenario (i) better describes reality, while comparing with
scenario (ii) helps quantify deviations from thermalization.
Under thermal ansatz, the dynamics reduce to coupled
equations for particle number and temperature, detailed
in [42].
Conventionally, for a two-body loss, denoting the total

number of particles to be NðtÞ ¼ R
d3knkðtÞ=ð2πÞ3 orR

d3rd3kfðr;k; tÞ=ð2πÞ3, it is most natural to expect the
dynamics to be [49]

dNðtÞ=dt ∝ −NðtÞN ; ð5Þ

where N ¼ 2. Though this holds for s-wave interactions,
we will demonstrate later that in single-component Fermi
gases with collisions of p-wave nature, the two-body loss
dynamics may lead to N ≠ 2.
Harmonically trapped systems—We first consider sys-

tems loaded into a harmonic trap, where the dynamics are
described by Eq. (4). As a general feature of the Boltzmann
equation, Eq. (4) has an irreducible six-dimensional spatial
complexity, making it hard to solve. Nevertheless, there
exists a separation of time scales, which simplifies
the problem. The harmonic trap tends to average the
phase space distribution fðr;k; tÞ such that it has a
spherical symmetry in the whole phase space, i.e.,

defining RðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i¼x;y;zf½ki=ktrapF ðtÞ�2þ½ωiri=ωrFðtÞ�2g
q

,

fðr;k; tÞ≡ fðR; tÞ, where ktrapF ðtÞ ¼ ½48NðtÞ�1=6 ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mω=ℏ

p

and rFðtÞ ¼ ½48NðtÞ�1=6 ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=Mω

p
are the Fermi momentum

and Thomas-Fermi radius of the harmonically trapped
system, respectively, with ω ¼ ðωxωyωzÞ1=3 being the
geometric mean of angular frequencies of the harmonic
trap. Indeed, this is the steady-state solution without the
inelastic term. Despite the fact that the inelastic collisions
drive the phase space density into asymmetric forms, under
typical experimental parameters, two-body dissipation has
a much longer time scale (usually on the order of s)
compared to that of cloud-flowing determined by trap
frequencies (typically on the order of ms). Thus, we
propose a fast-flowing approximation, which assumes that
the phase space distribution is always in the spherical form.
This could be understood as the following: though the
inelastic collision tries to bring asymmetry to the
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distribution, the trap term restores the symmetry at a much
faster rate. We have validated this approximation through a
quasi-1D analogy of Eq. (4) in the companion paper [42]. It
is noted that the fast-flowing approximation is closely
related to the basic assumption of Chapman-Enskog
expansion in classic hydrodynamics, where the collision,
rather than flowing, is assumed to have the fastest time-
scale enforcing system obeying the steady state of the
collision integral.
Under the fast-flowing approximation, we numerically

solve Eq. (4) and demonstrate results starting with
systems above, near, and in the deep degeneracy
(Tð0Þ=T trap

F ¼ 1.26, 0.48, and 0.1, respectively) in
Fig. 1(a). For convenience, we set the unit ttrap0 ¼
4M=ðπℏ½ktrapF ð0Þ�5j ImðvpÞjÞ. We have compared our calcu-
lationwith experimental data provided inRef. [50] for the first
two cases and shown that they agreewell for long times (both
situations correspond to approximately 6 seconds in the
experiment [20]). We note that the short-time limit of the
number dynamics agrees with the contact-loss relation
explored in previous works [39,41] and is also consistent
with the temperature-dependent loss rate measurements [42].
To investigate the system’s thermalization during evo-

lution, we also solve the inelastic quantum Boltzmann

equation under thermal ansatz and compare the result with
our numerical results. The fast-flowing approximation is
exact for systems in the equilibrium limit since the thermal
ansatz naturally respects spherical symmetry in the phase
space. We assume that initially, the system starts from an
equilibrated state at a temperature T. The thermal ansatz
then means that fthðk; rÞðtÞ always has the shape of a
Fermi-Dirac distribution, but with varying temperature TðtÞ
and Fermi temperature T trap

F ðtÞ ¼ ℏ2½ktrapF ðtÞ�2=2MkB,
i.e., fthðk; rÞ≡ fth½RðtÞ; t� ¼ fexp ½RðtÞ2=½TðtÞ=T trap

F ðtÞ��
ðzth;trapÞ−1 þ 1g−1, where zth;trap ¼ −Li3ð−zth;trapÞ ¼
½TðtÞ=T trap

F ðtÞ�−3=6 with Lis denoting the polylogarithm
function. Figure 1(a) shows that the thermal ansatz closely
matches the fast-flowing approximation predictions for
particle-number dynamics. This observation provides
insight into why a phenomenological two-body decay
equation describes the system well in this case: in the high-
initial-temperature limit Tð0Þ=Ttrap

F ð0Þ → ∞, we derive an
analytical solution based on the thermal ansatz [42]:

NðtÞ ¼ Nð0Þ=½1þ Cðt=ttrap0 Þ�0.960; ð6Þ

where C ¼ 0.198418=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tð0Þ=Ttrap

F ð0Þ
q

. Applying Eq. (5)

to Eq. (6) yields N ¼ 2.04167, which is nearly the
conventional two-body behavior (N ≈ 2). This behavior
is independent of the trap frequencies as long as they are
larger than the characteristic two-body loss frequency.
Through the temperature dynamics of thermal ansatz, we

can also reproduce the antievaporation without introducing
an artificial heating term [44]. Below, we present the results
in two complementary ways. First, Fig. 1(b) illustrates the
dynamics of the “physical temperature,” using T trap

F ð0Þ as a
fixed unit to characterize the average particle energy.
Second, Fig. 1(c) displays the “reduced temperature,”
where T trap

F ðtÞ evolves with the total particle number,
indicating whether the system is in a “high-temperature”
or “low-temperature” regime. Analysis of both physical and
reduced temperature evolution [Figs. 1(b) and 1(c)] shows
that both temperatures increase regardless of initial con-
ditions, which is consistent with the antievaporation phe-
nomena observed in experiments, i.e., density-dependent
loss leads to faster depletion at trap center, causing
cloud expansion and effective heating that dominates the
dynamics.
Finally, we examine the momentum distribution

evolution [Nðk̄; tÞ ¼ 4πk̄2
R
d3rfðr;k; tÞ=ð2πÞ3, where

k̄ ¼ k=ktrapF ð0Þ]. Systems starting above degeneracy are
well described by the corresponding thermal ansatz
[Fig. 1(d)], while those beginning in deep degeneracy
exhibit nonequilibrium behavior [Fig. 1(e)]. It is worth-
while to note that, though thermal ansatz does not agree
well with the low-temperature evolution, a “quasithermal
profile,” i.e., fit time-of-flight images to a general

(a)

(b)

(c)

(d)

(e)

FIG. 1. Long-time dynamics of the trapped single-component
Fermi gases with inelastic p-wave interactions. (a) Total number
of particles as a function of time. Symbols, solid lines, and dashed
lines are experimental data from Ref. [50], numerical results
solved from the inelastic Boltzmann equation [Eq. (4)] under the
fast-flow approximation, and results obtained from thermal
ansatz, respectively. From top to bottom, cyan, magenta, and
yellow denote initial temperatures T ¼ 1.26, 0.48, and
0.1T trap

F ð0Þ, respectively [for experimental data, we set Nð0Þ ¼
46000 and 8400 at high and medium temperatures, respectively].
Inset: longer time dynamics for Tð0Þ=T trap

F ð0Þ ¼ 1.26. (b),(c) Dy-
namics of physical and reduced temperatures of thermal ansatz.
Colors have the same meaning as those in (a). (d),(e) Evolution of
radial momentum distribution for Tð0Þ=T trap

F ð0Þ ¼ 1.26 and 0.1,
respectively. From top to bottom at k̄ ¼ 0.7, red, green, blue, and
black denote t=ttrap0 ¼ 0, 10, 20, 50, respectively. Solid lines and
dotted lines represent numerical results under fast-flow approxi-
mation and its quasithermal profile fit, respectively; the dashed
line is for the thermal ansatz.
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Fermi-Dirac distribution with three parameters of prefactor,
T, and fugacity z, can still be made and agrees with the
momentum distribution well. In fact, this could be a typical
practice in experiments as the prefactor originates from
absorption imaging. Figures 1(d) and 1(e) demonstrate that
this quasithermal profile fits the fast-flowing approximation
results well, even for low initial temperatures and long-time
evolution. Consequently, experimental measurements may
conclude that the system is “thermalized” based on this
criterion.
Box potential—Though our theory explains existing

experiments without fitting parameters, they could still
be approximated well by thermal ansatz or even a naive rate
equation. This “disappointing” result comes from the trap
averaging: the harmonic trap provides a force in the
momentum space such that it induces a flow in phase
space seemingly towards a thermal state. Fortunately,
nowadays, experiments are also performed in box traps
[51], where this unwanted flow does not exist. In this case,
the problem is even simpler as we only need to evolve the
three-dimensional momentum distribution instead of the
six-dimensional phase space distribution.
Again, we assume that the system starts from an

equilibrated state at temperature T. Thus, nkð0Þ simply
follows the Fermi-Dirac distribution nkð0Þ ¼ ½expðℏ2k2=
2MkBTÞzðTÞ−1 þ 1�−1. The fugacity zðTÞ is implicitly
determined by −Li3=2½−zðTÞ� ¼ 4T̄−3=2=3

ffiffiffi
π

p
, where T̄ ¼

T=TFð0Þ and TFð0Þ ¼ ℏ2½6π2Nð0Þ=V�2=3=2M. Utilizing
Mellin transformation, in the zero elastic collision limit,
we find an accurate approximation of NðtÞ [42]

NðtÞ ¼ Nð0Þ½1þ ðF1 þ F2=F1Þðt=t0Þ�
−2F2

1

F2
1
þF2 ; ð7Þ

where Fj ¼ − 3
2
T̄

3
2
þjΓð3=2þ jÞLi3

2
þj½−zðTÞ� and t0 ¼

M=ð12πℏk5Fð0Þj ImðvpÞjÞ is the time unit; the homo-
geneous Fermi momentum is kFðtÞ ¼ ½6π2NðtÞ=V�1=3.
Solid lines and symbols in Fig. 2(a) demonstrate the

comparison between Eq. (7) and brute-force numerical
solution, showing that the approximation is satisfactory
within a reasonably long time window. It is noted that
Eq. (7) is the solution of Eq. (5) with

N ¼ 3=2þ F2=ð2F2
1Þ; ð8Þ

thus, one may regard the dissipation dynamics as an
N -body process in the conventional sense. The inset
of Fig. 2(a) shows N against T̄, where we observe
that N monotonically decreases with T̄. It is straight-
forward to obtain the limits N ðT̄ → 0Þ ¼ 44=21 and
N ðT̄ → ∞Þ ¼ 7=3. Note that Eq. (7) is exact in the limit
T̄ → ∞, where the full dynamics of nkðtÞ is [42]

nkðtÞ ¼
4 exp ½−k̄2ð1þ 4T̄tÞ14=T̄t0�
3

ffiffiffi
π

p
Nð0ÞT̄3

2ð1þ 4T̄t=t0Þ83
; ð9Þ

where k̄ ¼ k=kFð0Þ.
To rigorously check whether the system thermalizes after

a long time evolution, we solve Eq. (2) under the thermal
ansatz with varying TðtÞ and TFðtÞ ¼ ℏ2½kFðtÞ�2=2MkB,
i.e., nthk ðtÞ¼fexp½½k=kFðtÞ�2=½TðtÞ=TFðtÞ��zthðtÞ−1þ1g−1,
where −Li3=2½−zthðtÞ� ¼ 4½TðtÞ=TFðtÞ�−3=2=3

ffiffiffi
π

p
. In the

high-initial-temperature limit Tð0Þ=TFð0Þ → ∞, there are
simple solutions [42]: NðtÞ ¼ Nð0Þ=½1þ 4T̄ð0Þt=t0�34 and
TðtÞ ¼ Tð0Þ=½1þ 4T̄ð0Þt=t0�14. Substituting back to the
thermal ansatz and taking the high-temperature limit,
one recovers Eq. (9), confirming that the system continu-
ally evolves under thermalized profiles even strictly with-
out elastic collisions. Note that the high-temperature long-
time power-law decay has also been reported in arbitrary
dimensions [52].
To determine whether systems at finite temperatures

thermalize, we numerically evaluate the thermal ansatz to
calculateNðtÞ=Nð0Þ and compare it with Eq. (7). Similar to
harmonically trapped systems, we plot the results in terms

(a) (b)

(c)

(d)

(e)

FIG. 2. Long-time dynamics of single-component Fermi gases
with inelastic p-wave collisions in box potential. (a) Total
number of particles as a function of time t. Circles, solid lines,
and dashed lines represent the numerical solution of the inelastic
Boltzmann equation [Eq. (2) ignoring elastic collision integral],
the analytical approximation [Eq. (7)], and the solution based on
thermal ansatz, respectively. From top to bottom, yellow, ma-
genta, and cyan denote the initial temperatures Tð0Þ ¼ 0.1, 1, and
2TFð0Þ, respectively. Inset: the N-body indicator [Eq. (8)] as a
function of the initial temperature Tð0Þ. (b),(c) the physical
temperature in units of TFð0Þ and the reduced temperature as a
function of time, respectively; from top to bottom, the yellow,
magenta, and cyan lines correspond to initial temperatures
Tð0Þ ¼ 0.1, 1, and 2TFð0Þ, respectively. (d),(e) the dynamics
of the radial momentum distribution of the system with initial
temperature Tð0Þ ¼ 2TFð0Þ and Tð0Þ ¼ 0.1TFð0Þ, respectively.
Solid and dashed lines denote brute-force numerical solution of
the inelastic Boltzmann equation and results based on thermal
ansatz, respectively. Black, red, green, and blue denote t=t0 ¼ 0,
2, 5, 25, respectively.
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of “physical temperatures” [Fig. 2(b)] and “reduced tem-
peratures” [Fig. 2(c)]. The physical temperature dynamics
strongly depend on the initial temperature. (i) It decreases
for systems initially above or near quantum degeneracy.
This is because high-momentum particles are more likely to
tunnel through the p-wave barrier and undergo collisions,
as reflected in the momentum dependence of Eq. (3).
Consequently, p-wave collisions preferentially remove
higher-energy particles, reducing the average energy and,
thus, the physical temperature. (ii) In the deeply degenerate
regime, any perturbation to the Fermi sea structure,
including dissipation, tends to heat the system, thus
increasing the physical temperature. In contrast, reduced
temperatures always increase, indicating that p-wave
inelastic collisions invariably drive the system away from
quantum degeneracy and ultimately into the high-temper-
ature regime. Note that, in comparison, harmonically
trapped systems [Figs. 1(b) and 1(c)] behave rather differ-
ently due to the extra dynamics of the shape.
Interestingly, in homogeneous systems, particularly

those starting from low initial temperatures, the quasither-
mal profile fails to provide an excellent fit. Instead, we find
that the long-time asymptote of the radial momentum
distribution in homogeneous systems follows Nðk̄; t →
∞Þ ∝ expð−αk̄2Þk̄19=2 in the zero initial temperature limit
(see our companion paper [42]), where α is a constant. In
contrast, the quasithermal profile can only fit expð−αk̄2Þk̄2,
further highlighting the distinct behavior between homo-
geneous and harmonically trapped systems.
Returning to particle-number dynamics, dashed lines in

Fig. 2(a) show the thermal-ansatz predictions. For systems
near or above quantum degeneracy (T̄ ¼ 1 and 2), N is
approximately the same value at the high-temperature limit
7=3, and we also observe that the solution from Eq. (7)
agrees well with the thermal ansatz. However, in deeply
degenerate systems (T̄ ¼ 0.1),N is approximately 2.1, and
a notable discrepancy in the number of particles emerges in
the long-time tail. Correspondingly, we present the evolu-
tion of the radial momentum distribution Nðk̄Þ ¼
4πk̄2nkV=ð2πÞ3 in Figs. 2(d) and 2(e) for these two distinct
cases: T̄ ¼ 1 and T̄ ¼ 0.1. At T̄ ¼ 1, the two are virtually
indistinguishable, underscoring the close approximation to
thermalization in near-degenerate conditions. Conversely, a
discernible difference emerges between the two profiles at
the deeply degenerate temperature T̄ ¼ 0.1.
Conclusion—To summarize, we derived the inelastic

quantum Boltzmann equation for single-component fermi
gases with two-body loss and theoretically studied the
long-time thermalization dynamics. Our first-principle
calculations explain experiments in traps without fitting
parameters and provide physical insights into the “anti-
evaporation” phenomena. Our prediction that the low-
temperature lossy system becomes nonthermal could be
further verified using atoms such as Li and K loaded in
optical boxes, where the two-body loss could be induced

using optical Feshbach resonance or dipolar relaxation
[53–62]. Our particle-number loss curve could serve as a
thermometer for box-trapped systems. In addition, our
work serves as valuable benchmarks for calibrating relevant
Direct Simulation Monte Carlo simulations [63] and
contact measurements using two-body loss in p-wave
BCS-BEC crossover studies in the future.
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