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Inelastic quantum Boltzmann equation of single-component Fermi gases
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This work is a companion paper to X.-Y. Gao et al., Phys. Rev. Lett. 134, 153402 (2025), where we
discuss the nonequilibrium two-body loss dynamics of a single-component ultracold Fermi gas and its possible
thermalization. This paper provides detailed information on the derivation and analysis of the inelastic quantum
Boltzmann equation (IQBE) used to describe the system. We demonstrate that the Mellin transform is a powerful
tool for solving and approximating the IQBE for free-space systems. In this case, the particle-number dynamics
are beyond the description of the widely used phenomenological two-body equation. For harmonically trapped
systems, we propose a fast-flowing approximation to simplify the numerical evaluation of the IQBE. We verify
the approximation in an analogous quasi-one-dimensional system and apply it to three-dimensional calculations,
obtaining satisfactory agreement with recent experimental results. Furthermore, we compare the nonequilibrium
results with those obtained using a thermal ansatz in both situations, providing a systematic understanding of the
antievaporation phenomena observed in such systems.
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I. INTRODUCTION

As the key concept in the kinetic theory, the Boltzmann
equation describes the evolution of a classic many-body
system towards thermal equilibrium [1]. An analog can be ob-
tained for normal-phase quantum gases or even Bose-Einstein
condensates [2] and fermionic superfluid [3,4], known as the
quantum Boltzmann equation. It is notoriously hard to solve
such equations directly due to their six-dimensional spatial
complexity and the sophisticated form of the collision inte-
gral. Under the collision integral’s relaxation approximation
(or Bhatnagar-Gross-Krook (BGK) approximation [5]), the
Boltzmann equation has been widely adopted to study hy-
drodynamic expansion [6,7], collective modes [8,9], and spin
waves [10] in harmonically trapped quantum gases. Various
numerical methods also tackle collision integral without ap-
proximation, mainly based on the direct simulation Monte
Carlo method [11,12] and its variants [13–17]. In all usual
applications above, the particles are assumed to be feature-
less and only possess translational motions. Consequently,
the collision integral only captures the system’s elastic colli-
sions. However, inelastic collisions can also play an essential
role in certain situations, especially in the study of ultracold
molecular gases, where the inelastic collision due to intrin-
sic chemical reactions affects the efficiency of evaporative
cooling and the lifetime of the gas [18]. In the Boltzmann
equations describing classic granular fluids, the inelastic col-
lision is implemented by breaking momentum and energy
conservation in the collision integral [19–23]. Nevertheless,
such generalization cannot be directly applied to quantum
Boltzmann equations since the inelastic collision changes the
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particles’ internal states, which indicates not only the dis-
sipation of energy but also the loss of the total number of
particles (if we only concern the internal states where particles
start from). Note that non-Hermitian linear response theory
predicts (stretched) exponential loss for a one-body loss and
broadening of momentum distribution for two-body atom-
number-conserving dissipation in a short timescale [24]. In
comparison, this work considers the long-time dynamics as
well as the effect of the two-body lossy dissipator.

In this article (and corresponding Letter [25]), we focus on
single-component ultracold molecular Fermi gas, a simple but
highly nontrivial quantum gas system with inelastic collision,
to demonstrate how to model the system’s dynamics with a
proper inelastic quantum Boltzmann equation (IQBE). Exper-
imentally, this is related to two molecular platforms, including
40K 87Rb (e.g., see Ref. [26]) and 23Na 40K (e.g., see Ref. [27])
Fermi gases with two-body loss induced by chemical reac-
tions and two atomic platforms: Li and K with two-body loss
induced by dipolar relaxation. Here are some general prop-
erties of those systems: (i) Although the detailed mechanism
may differ, the outcomes are the same. The outgoing particles
of inelastic scattering will gain enough kinetic energy to es-
cape from the trap. As a result, two particles will be lost per
inelastic collision event. (ii) The systems are prepared with
initial temperatures typically below 1 µK. In this ultracold
regime, the two-body collision follows threshold behavior,
i.e., only the lowest possible partial wave channel dominates
the phase shift. This is true for both elastic and inelastic col-
lisions. (iii) Unlike the usual Fermi gas with balanced spin-up
and -down components, all particles in such systems are typi-
cally prepared in the same rovibrational ground state. Because
of the Pauli exclusion principle, the natural lowest partial
wave channel, s-wave collision, is prohibited. Combined with
the above mentioned, the p-wave channel will dominate,
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providing the interparticle potential with a centrifugal barrier.
As detailed in this work, the relative momentum selection
caused by the centrifugal barrier is the origin of the intriguing
dynamics of such systems. (iv) Without Feshbach resonance,
the bare scattering volume of elastic collision is extremely
small. Furthermore, when the system is away from the equi-
librium state, p-wave collision cannot equilibrate the system
in a typical experimental timescale. The argument will also be
elaborated in the following sections.

This work will be mainly divided into three parts. In the
first part, we introduce the model, derive the IQBE from
scratch, and comment on the system’s relaxation time. In the
second part, we focus on homogeneous systems with spatial
translational symmetry. In the third part, we work on harmon-
ically trapped systems closely related to recent experiments.

II. NON-HERMITIAN HAMILTONIAN

As explained in Sec. I, we must construct a model with p-
wave interaction and include inelastic collision. The simplest
option is to use one-channel non-Hermitian Hamiltonian

Ĥ = T̂ + Û ,

T̂ =
∑

k

h̄2k2

2M
c†

kck,

Û = 3g

2V

∑
P,q,q′

q · q′c†
P
2 +q

c†
P
2 −q

c P
2 −q′c P

2 +q′ ,

(1)

where M is the mass of particles, V the volume of the system,
and ck the annihilation operator of a particle. The momentum
dependence in the interaction reflects the p-wave symmetry.
Importantly, the coupling constant g is a complex number,
accounting for both elastic and inelastic collisions. The non-
Hermitian Hamiltonian here is an effective field theory from a
Hermitian model, integrating the product channel of two-body
chemical reaction [28]. For low-temperature threshold colli-
sion, the phase shift of the p-wave channel δp can be expanded
as k3 cot(δp) = −1/vp + O(k2), where vp is defined as the
scattering volume. Because the system has inelastic collisions,
both δp and vp are expected to be complex. Following the
standard renormalization procedure of comparing T matrix
calculated from Eq. (1) with scattering amplitude, one has

1

g
= M

4π h̄2vp
+ M

2π2h̄2

∫ ∞

0
dq q2. (2)

In this work, we treat the scattering volume to be small and
far from any p-wave resonance, thus, it is enough only to take
the normal part of the renormalization condition, which is

g = 4π h̄2[Re(vp) + i Im(vp)]/M. (3)

Most literature discussing many-body systems with p-
wave collision stresses the importance of effective range R
aside from vp. It is defined through the next-order expansion
of p-wave phase shift k3 cot(δp) = −1/vp − k2/R + O(k4).
In the following discussion, for simplicity of application to
typical ultracold molecular or atomic systems, we focus on
conditions under which the term involving R is subdominant.

Explicitly, the application range for our theory is

n5/3

∣∣∣∣∣v
2
p

R

∣∣∣∣∣ � n |vp| � 1, (4)

where n is the number density. This set of inequalities is moti-
vated by the “naturalness” of the systems in question, in which
the scattering volume vp and the effective range R arise from
the same underlying van der Waals potential. Specifically, we
denote � � v1/3

p as the natural length scale associated with
the van der Waals coefficient C6, and we assume n � �−3.
Consequently, one finds

n5/3

(
v2

p

R

)
∼ n5/3 �5 ∼ n2/3 �2

(
n vp

) � n vp � 1,

thus justifying the neglect of the effective range in most cases
considered here. As a concrete example, for 40K atoms in
the ground state, one has vp � (96.74 a0)3 and R � 46.22 a0

[29,30], meaning � ≡ v1/3
p and R differ by only about a factor

of 0.48, illustrating that the length scales are indeed com-
parable. However, we should emphasize that the argument
does not completely exclude the extreme case: if a particular
system were to realize extremely small R at a given vp, one
might need to include the effective-range corrections for a
more accurate description.

III. INELASTIC QUANTUM BOLTZMANN EQUATION

In this section, we provide a deviation of the inelastic
quantum Boltzmann equation we will use to describe the
dissipation dynamics in this work. The standard form of a
Boltzmann equation is an equation of motion of phase-space
density f (k, r), composed of Vlasov equation for modeling
diffusion and drift flow and collision integral Icoll[ f ] depict-
ing the collision

df

dt
+

[
h̄k
M

∇r − ∇rUext · ∇k

h̄

]
f = Icoll[ f ]. (5)

The task is to obtain the form of Icoll[ f ] from the first princi-
ple, e.g., the Schrödinger equation.

We start with homogeneous systems, where we assume
f (k, r) = V nk with nk the momentum distribution of the sys-
tem. It simplifies Eq. (5) to

dnk

dt
= 1

V
Icoll[V nk]. (6)

After obtaining Icoll[V nk]/V for homogeneous systems, we
immediately have the form Icoll which also applied to the
arbitrary inhomogeneous system under local density approxi-
mation, which means one treats each local regimes a separate
small homogeneous piece. The approximation is exact in the
thermodynamic limit.

We use the following symbols to denote the time depen-
dence of operators, states, and the density matrix in different
pictures:

Schrödinger picture: Â, |ψt 〉, ρt ;

Heisenburg picture: Ât , |ψ〉, ρ;

Interaction picture: Â(t ), |ψ (t )〉.
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Investigating the evolution of nk is equivalent to studying
the dynamics of number operator Nk = c†

kck. In a small time
window t , the change of expectation 〈Nk〉 is

�〈Nk〉 = Tr(ρt Nk ) − Tr(ρ0Nk )

=
∑

n

ρnn[〈n(t )|Nk|n(t )〉 − 〈n0|Nk|n0〉]

=
∑

n

ρnn〈n|e i
h̄ T

∫
Û †(t )dt

× (
Nke− i

h̄ T
∫ t Û (t ′ )dt ′ − e− i

h̄ T
∫ t Û †(t ′ )dt ′

Nk
)|n〉. (7)

Here, we use the symbol |n〉 to denote a general Fock state,
and T is the time-ordered operator. Based on the definition of
T [31], one can expand �〈Nk〉 up to the second-order in terms
of the interaction

�〈Nk〉 = �〈Nk〉(1) + �〈Nk〉(2)
1 + �〈Nk〉(2)

2 , (8)

where the first-order term is

〈Nk〉(1) =
∑

n

ρnn

ih̄
〈n|Nk

∫ t

0
Û (t ′)dt ′ −

∫ t

0
Û †(t ′)dt ′Nk|n〉.

(9)
And there are two second-order terms, which are

�〈Nk〉(2)
1 =

∑
n

ρnn

h̄2 〈n|
∫ t

0
Û †(t ′)dt ′

×
(

Nk

∫ t

0
Û (t ′)dt ′ −

∫ t

0
Û †(t ′)dt ′Nk

)
|n〉 (10)

and

�〈Nk〉(2)
2 = −

∑
n

ρnn

h̄2 〈n|Nk

∫ t

0
dt ′

∫ t ′

0
dt ′′Û (t ′)Û (t ′′)

−
∫ t

0
dt ′

∫ t ′

0
dt ′′Û †(t ′)Û †(t ′′)Nk|n〉. (11)

It is worth emphasizing that since Û is non-Hermitian, Û † is
distinguishable from Û . The expansion up to the second order
is justified by the fact that interaction is weak enough, which
will be further confirmed in Sec. IV.

Let us focus on the 〈Nk〉(1) first. Decomposing the term by
separating real and imaginary parts of interaction and taking
the short-time limit, we have

�〈Nk〉(1) t→0−−→ t

ih̄

∑
n

ρnn〈n|[Nk, Re(Û )]|n〉

+ t

h̄

∑
n

ρnn〈n|{Nk, Im(Û )}|n〉. (12)

Before further proceeding, an important observation is that the
second term above is not physical since if we replace Nk with
identity operator I (in the previous steps, we do not explicitly
use the form of Nk, so this is available),

�〈I〉(1) = � Tr(ρ)
?= 2t

h̄
Im(Û ). (13)

Because the trace of the density matrix should always be one,
� Tr(ρ) = 0, which is inconsistent with the right-hand side of

the equation. To fix the problem, we should artificially add a
Lindblad jump term to Eq. (12),

�〈Nk〉(1) = t

ih̄

∑
n

ρnn〈n|[Nk, Re(Û )]|n〉

+ t

h̄

∑
n

ρnn〈n|{Nk, Im(Û )}|n〉

− 2t

h̄

∑
n,P,m

ρnn〈n|L̂†
P,mNkL̂P,m|n〉, (14)

where
∑

P,m L†
P,mLP,m = Im(Û ). One can check that if Nk is

replaced by identity operator I in Eq. (14), the trace of the
density matrix is conserved. To find the form of LP,m, we use
the addition theorem of Legendre polynomial,

q · q′ = qq′P1(q̂ · q̂′) = 4π

3

l∑
m=−1

Y1m(q̂)Y ∗
1m(q̂′), (15)

where Ylm are the spherical harmonics. Combining with
Eq. (1), we read off that the explicit form of LP,m is

L̂P,m =
∑

q

2
√

π Im(g)qY1m(q̂)c P
2 −qc P

2 +q. (16)

Then, a straightforward while lengthy calculation gives

�〈Nk〉(1) = − 6t

h̄V

∑
n

ρnn

∑
P,q

(
q − P

2

)
·
(

k − P
2

)

× [Re(g)Im〈n|c†
kc†

P−kcqcP−q|n〉
+ Im(g)Re〈n|c†

kc†
P−kcqcP−q|n〉]. (17)

Recalling that we choose |n〉 to represent Fock states, the
expectation can be evaluated following the canonical anticom-
mutation relation

〈n|c†
kc†

P−kcqcP−q|n〉
= (1 − δq,P/2)(δq+k,P − δq,k )Nk(n)NP−k(n)

+ δq,P/2δk,P/2Nk(n)[Nk(n) − 1], (18)

where Nk(n) signifies occupation number of particle with
momentum k of state |n〉. Substituting the above result to
Eq. (17), we have

�
〈
N (1)

k

〉
t

t→0−−→ d〈Nk〉(1)

dt

= −6 Im(g)

h̄V

∑
n

ρnn

∑
P,q

(
q − P

2

)
·
(

k − P
2

)

× (δq+k,P − δq,k )Nk(n)NP−k(n). (19)

Changing variable P → q′ + k, one observes that two delta
functions contribute equally:

d〈Nk〉(1)

dt
= 3 Im(g)

h̄V

∑
n

ρnn

∑
q

(q − k)2Nk(n)Nq(n). (20)

Because we assume that the interaction of the system is weak,
to the leading order, the expectation of Nk and Nq can be
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factorized [32]:

d〈Nk〉(1)

dt
= 3 Im(g)

h̄V

∑
n,n′

ρnnρn′n′
∑

q

(q − k)2Nk(n)Nq(n′)

= 3 Im(g)

h̄

∫
d3q

(2π )3
(q − k)2〈Nk〉〈Nq〉. (21)

It is noted that the right-hand side of Eq. (21) has already given
a part of Icoll[V nk]/V . Utilizing the spherical symmetry of
〈Nk〉 (it has the symmetry because the interaction Û here is
spherical symmetric) and 〈Nk〉 = V nk:

Icoll[V nk]/V = Iinel[V nk]/V + · · ·

= 12π h̄ Im(vp)V

M

∫
d3q

(2π )3
(q2 + k2)nknq

+ · · · . (22)

One observes that this part of the collision integral neither
has a constraint on momentum or energy conservation nor a
parameter related to Re(vp); thus, it is not a conventional col-
lision integral characterizing the strength of elastic collision,
but a part describing the momentum dependence of two-body

chemical reaction. We name this part of Icoll to be Iinel, the
inelastic collision integral. An equivalence of Eq. (22) has first
been obtained by Ref. [33] using a two-channel model. Here,
we derive Eq. (22) using our one-channel model differently to
make symbols self-contained. It is worth noting that although
reaching a similar Eq. (22), our following analysis is distinct
from that in Ref. [33], especially for the harmonically trapped
scenario. There are even more different methods for arriving at
an inelastic collision integral in a two-body dissipative system.
For example, Refs. [24,34,35] reach similar equations using
linear response theory and Keldysh field theory, respectively.
In Appendix A, we also show that if one is not concerned
about elastic collision completely, it is also convenient to
derive the inelastic collision integral (22) directly from the
Lindblad master equation.

We find that up to the first-order expansion, only inelastic
collision is considered. One needs to go to the second-order
expansion to account for elastic collision. Since we assume
interaction and reaction are weak, we ignore all inelastic
collision contributions from the second-order process. Con-
sequently, when consider the second-order process, we take
Û (t ) = Û (t )† = Re[Û (t )]. Reference [32] argues that only
�〈Nk〉(2)

1 contributes to the collision integral. With the sim-
plification above,

�〈Nk〉(2) = �〈Nk〉(2)
1 =

∑
n

ρnn

h̄2 〈n|
∫ t

0

∫ t

0
dt ′dt ′′Re[Û (t )][Nk, Re[Û (t )]]|n〉

=
∑
n,l

ρnn
sin2[(En − El )t/2h̄]

(En − El )2
〈n|Re(Û )|l〉〈l|[Nk, Re(Û )]|n〉, (23)

where En and El denote energy of state |n〉 and |l〉, respectively. Taking the Markovian limit for the above expression [32], we
have

�〈Nk〉(2) = 2πt

h̄

∑
n,l

ρnnδ(En − El )〈n|Re(Û )|l〉〈l|[Nk, Re(Û )]|n〉. (24)

Because both |n〉 and |l〉 are Fock states, it is possible to directly evaluate expectations in Eq. (24), which yields

∑
n,l

ρnn〈n|Re(Û )|l〉〈l|[Nk, Re(Û )]|n〉 = 9

2

Re(g)2

V 2

∑
P,Q,p,p′,q

(p · p′)
[(

Q
2

− k
)

· q
]

[δp,qδP,QδP/2+p′,k(1 − 〈NQ−k〉)

× (1 − 〈Nk〉)NQ/2−qNQ/2+q − δp′,qδP,QδP/2−p,k(1 − 〈NQ/2+q〉)

× (1 − 〈NQ/2−q〉)NkNQ−k]. (25)

Again, we factorize expectations of the number of particles with different momentum as what is done in Eq. (18). Combining
Eqs. (24) and (25), we have

�〈Nk〉(2)

t
t→0−−→ d〈Nk〉(2)

dt
= 18πM

h̄3

Re(g)2

V 2

∑
Q,q

(
Q
2

− k
)2(Q

2
− q

)2

δ(k2 − q2 + k · Q − q · Q)

× [(1 − 〈NQ−k〉)(1 − 〈Nk〉)〈Nq〉〈NQ−q〉 − 〈NQ−k〉〈Nk〉(1 − 〈Nq〉)(1 − 〈NQ−q〉)]. (26)

Equation (26) contains the terms describing elastic collision, making Icoll[V nk]/V = Iinel[V nk]/V + Iel[V nk]/V , where Iel is
the elastic collision integral, in contrast to the inelastic contribution. Explicitly, the form is given by

Iel[V nk]/V = 288π3h̄ Re(vp)2V

M

∫
d3q

(2π )3

∫
d3Q

(2π )3
δ(k2 − q2 + k · Q − q · Q)

(
Q
2

− k
)2(Q

2
− q

)2

× [(1 − nQ−kV )(1 − nkV )nqnQ−q − nQ−knk(1 − nqV )(1 − nQ−qV )]. (27)
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IV. RELAXATION TIME OF p-WAVE ELASTIC COLLISION

In the Introduction, we state that recent experimental sys-
tems exhibiting only p-wave elastic collisions struggle to
rethermalize from a nonequilibrium state. This observation
is crucial, as it allows us to safely disregard the elastic colli-
sion integral when analyzing IQBE in subsequent discussions.
Before validating this statement, it is essential to distinguish
between two key assumptions in this work: (1) the system’s
interaction is weak, and (2) the system can hardly rethermal-
ize. The first assumption implies that the interaction effect can
be treated as a perturbation, i.e., Re(vp)k3

F � 1, where kF is
the system’s Fermi momentum (divided by h̄). The second
assumption means that the relaxation time of elastic collisions
is significantly longer than other timescales in the system. It
is worth noting that these two assumptions are not inherently
related. This section will use typical experimental data to
support both assumptions.

We focus on two experimental realizations mentioned in
the Introduction: rovibrational ground state 40K 87Rb and
23Na 40K molecular gases. The real parts of their bare scat-
tering volumes vp have been determined to be (118a0)3

[36] and (88a0)3 [27], respectively. The Fermi momen-
tum of a harmonically trapped system is defined by kF =
(48N )1/6√Mω̄/h̄ [37]. For a conservative estimate, we de-
liberately overestimate the typical number of particles N in
experiments to be 105 and assume the geometric mean of
the harmonic trap’s angular frequency ω̄ to be approximately
2π × 100 Hz. Using these values, we calculate Re(vp)k3

F for
both systems, yielding approximately 7.5 × 10−4 and 1.1 ×
10−4, respectively. These values are significantly less than 1,
supporting the weak interaction assumption.

To estimate the relaxation time, we begin with a simple
derivation. We define the p-wave scattering volume from the
phase shift δp, related to the scattering matrix S by

S = e2iδp ≈ 1 + 2iδp. (28)

The expansion is valid because we have already shown that
the interaction is weak enough: the phase shift should also be
small. The elastic cross section is then given by

σel = 3π

k2
|1 − S|2 ≈ 12π [Re(vp)]2(kr )4, (29)

where kr is the relative momentum between two scatters in
a two-body collision. Defining the scattering energy E =
h̄2k2

r /M, we can express σel as

σel(E ) = 12π [Re(vp)]2 M2E2

h̄4 . (30)

Assuming the trapped system is not in deep degeneracy, we
can approximate the phase-space density of the cloud with a
simple Gaussian distribution:

f (k, r) = z exp

(
− h̄2k2

2MkBT

)
exp

(
−M

∑
i ω

2
i r2

i

2kBT

)
, (31)

where i represents x, y, and z directions of the harmonic
trap. The fugacity z = T 3

F /(6T 3), with TF = h̄2k2
F /2M, is

determined by the normalization condition

N =
∫

d3k

(2π )3
d3r f (k, r; z). (32)

Integrating the real-space dependence in f , we obtain the
momentum distribution

f (k) = z

(
2πkBT

Mω2

)3/2

exp

(
− h̄2k2

2MkBT

)
. (33)

For two colliding particles with momenta k1 and k2, the dis-
tribution is

f (k1) f (k2) = f (kr ) f (kR), (34)

where kr = (k1 − k2)/2 and kR = k1 + k2 are relative and
center-of-mass momenta. Changing the argument of f (kr )
to E ,

f (kr ) = f (E ) = z

(
2πkBT

Mω2

)3/2

exp

(
− E

kBT

)
. (35)

We then calculate

〈σelvr〉 = 1

N

∫
d3kr

(2π )3
f (E )σel(E )vr (E )

= 1152
√

2πM3/2[Re(vp)]2(kBT )5/2/h̄4, (36)

where vr is the relative speed of colliding particles, defined
by Mv2

r /4 = E . From Eq. (31), we obtain the in situ average
density:

f (r) =
∫

d3k

(2π )3
f (k, r),

〈 f (r)〉 =
∫

d3r f (r)2∫
d3r f (r)

= N

8π3/2
ω̄3

(
kBT

M

)−3/2

. (37)

Combining Eqs. (36) and (37), we derive the timescale for one
elastic collision event:

tel = 1

〈σelvr〉〈 f (r)〉 = 219/6π

34/3N1/3
[
Re(vp)k3

F

]2
(T/TF )ω̄

. (38)

The system’s relaxation time should be αtel, where α is typi-
cally larger than 1, indicating that each particle should collide
more than once on average to reach equilibrium [13,38]. For
our purposes, the exact value of α is less critical, as a suffi-
ciently long tel implies an even longer relaxation time.

Using the same parameters as in our previous discussion
of Re(vp)k3

F and setting T = TF , we calculate tel for the two
systems under consideration. The results are approximately
6 min for 40K 87Rb and 5 h for 23Na 40K molecular gases.
Given that typical experimental durations are on the order of
several seconds, these relaxation times for p-wave elastic col-
lisions are significantly longer than other relevant timescales
in these systems. This substantial difference in timescales
supports our earlier assumption that the systems can hardly
rethermalize through elastic collisions alone.

V. DYNAMICS OF HOMOGENEOUS SYSTEMS

In this section, we discuss solutions to the IQBE derived in
Sec. III, focusing on homogeneous systems without external
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potentials. As explained in Sec. IV, it is reasonable to ignore
the elastic collision integral when modeling realistic cases.
Therefore, we analyze the IQBE without elastic collisions.
Then, we introduce effective temperatures to assess whether
systems heat or cool after dissipation. We also compare our
analytical approach with solutions obtained from the thermal
ansatz, which assumes continuous thermalization during sys-
tem dynamics.

For clarity, we employ dimensionless quantities throughout
this section, denoted by a bar hat. Our chosen unit system is
based on initial Fermi momentum kF (0) = [6π2N (0)/V ]1/3,
temperature TF (0) = h̄2kF (0)2/2MkB, and energy EF (0) =
kBTF (0):

momentum: k → k̄kF (0),

temperature: T → T̄ TF (0),

time: t → t̄ h̄/EF (0).

It is important to note that we consistently use the initial par-
ticle number N (0) rather than instantaneous particle number
N (t ) as a reference for our units, hence the argument 0. This
distinction becomes crucial when discussing systems using
effective temperatures, where the effective Fermi temperature
TF (t ) varies with time. To avoid confusion, our unit system
remains constant, i.e., generally, T̄F (t ) �= 1.

A. Mellin space analysis

Ignoring the elastic collision integral, the dimensionless
form of IQBE (6) is

dN (k̄, τ )

dτ
= −N (k̄, τ )

∫
dq̄(k̄2 + q̄2)N (q̄, τ ), (39)

where

τ = −24π Im(v̄p)t̄ = −12π
h̄k5

F (0)

M
Im(vp)t (40)

is defined for convenience. N (k̄, τ ) is defined to be

N (k̄, τ ) = 4π k̄2V nk̄(τ )

(2π )3
,

which can be regarded as a one-dimensional (1D) projection
of the momentum distribution. If we set the system to be
thermalized initially, then the initial condition of N (k̄, τ ) is

N (k̄, 0) = 3k̄2

exp
(

k̄2

T̄

)
z−1 + 1

, z = −Li−1
3
2

( −4

3
√

π T̄ 3/2

)
,

(41)

where Li denotes the polylogarithm function and the index
−1 signifies an inverse function. The Mellin transform of a
function g(x) is defined by

M[g(x)](s) =
∫ ∞

0
dx xs−1g(x). (42)

We observe that Eq. (39) has a simpler form in Mellin space
(of dimensionless momentum k̄):

dM[N (k̄, τ )](s)

dτ
= −M[N (k̄, τ )](s)M[N (k̄, τ )](3)

− M[N (k̄, τ )](s + 2)M[N (k̄, τ )](1).

(43)

Let us define Fj = M[N (k̄, τ )](2 j + 1), the above equa-
tion becomes

dFj (τ )

dτ
= −Fj (τ )F1(τ ) − Fj+1(τ )F0(τ ). (44)

Notably, the above equation’s F0 and F1 are particularly
important. It is easy to check that they represent the normal-
ized total number of particles N (τ )/N (0) and total energy
N (τ )Ē (τ )/N (0), respectively. Combining the definition of Fj

and Eq. (41), at τ = 0, the initial conditions of Fj are given by

Fj (0) = −3

2
T̄

3
2 + j�

(
3

2
+ j

)
Li 3

2 + j (−z). (45)

1. High-initial-temperature exact solution

In the high-initial-temperature limit z → 0, Eq. (44) can
be analytically solved. First, it is easy to find two crucial
properties of high-order derivatives of Fj (τ ) using Eq. (44):
(1) the nth-order derivative of Fj is expressible as a sum of
products of n + 1 F terms, and (2) for each term, the sum of
the indices of F equals j + n. Summarized, the relationship is

dnFj

dτ n
= (−1)n

∑
{s1,s2,...,sn+1}∑

i si= j+n

C[ j; {s1, s2, . . . , sn+1}]

× Fs1 Fs2 . . . Fsn+1 . (46)

The index i varies from 1 to n + 1, and C[ j; {s1, s2, . . . , sn+1}]
denotes the count of terms corresponding to a set of indices si.
Figuring a general form for C[ j; {s1, s2, . . . , sn+1}] is gener-
ally challenging. However, with the high-temperature limit,
the difficulty can be avoided. We do further one order of
derivative to Eq. (46):

dn+1

dτ n+1
Fj = (−1)n

∑
{s1,s2,...,sn+1}∑

i si= j+n

C[ j; {s1, s2, . . . , sn+1}]

×
d

dτ

(
Fs1 Fs2 . . . Fsn+1

)
Fs1 Fs2 . . . Fsn+1

Fs1 Fs2 . . . Fsn+1 . (47)

Using the general expression of Eq. (44),

d
dτ

(
Fs1 Fs2 . . . Fsn+1

)
Fs1 Fs2 . . . Fsn+1

= −
n+1∑
k=1

∑
r={0,1}

FrFsk+1−r

Fsk

. (48)

At high-temperature regime T̄ � 1, using the property of
polylogarithm functions [39]

−Lis(−z)
z→0−−→ z, (49)
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the fugacity in Eq. (41) reduces to

z
T̄ →∞−−−→ − 4

3
√

π T̄ 3/2
= 1

�(5/2)T̄ 3/2
. (50)

Then, the initial condition (45) has the asymptote

Fj (0)
T̄ →∞−−−→ 3T̄ j

2

�
(

3
2 + j

)
�
(

5
2

) . (51)

Substituting Eq. (51) into (48) and taking τ = 0,

d
dτ

(
Fs1 Fs2 . . . Fsn+1

)
Fs1 Fs2 . . . Fsn+1

∣∣∣∣∣
τ=0

= −T̄
n+1∑
k=1

(3 + sk ). (52)

Substituting back to Eq. (47),

dn+1

dτ n+1
Fj

∣∣∣∣
τ=0

= (−1)n
∑

{s1,s2,...,sn+1}∑
i si= j+n

C[ j; {s1, s2, . . . , sn+1}]

× (
Fs1 Fs2 . . . Fsn+1

)[−T̄

(
3(n + 1) +

n+1∑
i=1

si

)]
.

(53)

Because of the constraint
∑

i si = j + n on the outermost
summation,

dn+1

dτ n+1
Fj

∣∣∣∣
τ=0

= (−1)n
∑

{s1,s2,...,sn+1}∑
i si= j+n

C[ j; {s1, s2, . . . , sn+1}]
(
Fs1 Fs2 . . . Fsn+1

){−T̄ [3(n + 1) + (n + j)]}

= −T̄ [3(n + 1) + (n + j)]
dn

dτ n
Fj

∣∣∣∣
τ=0

. (54)

The recursion relation can be explicitly solved as

dn

dτ n
Fj

∣∣∣∣
τ=0

= Fj (0)(−T̄ )n
n∏

n′=1

(4n′ − 1 + j)

= Fj (0)4n(−T̄ )n

(
3 + j

4

)
n

, (55)

where (a)x = �(a + x)/�(a) is the Pochhammer symbol.
Then, we find that Fj (τ ) can be identified as the generalized
hypergeometric function 1F0,

Fj (τ ) =
∞∑

n=0

τ n

n!

dn

dτ n
Fj

∣∣∣∣
τ=0

= Fj (0)
∞∑

n=0

(−4T̄ τ )n

n!

(
3 + j

4

)
n

= Fj (0) 1F
0

(
3 + j

4
; −4T̄ τ

)
. (56)

In fact, 1F0 is nothing but a simple function:

Fj (τ ) = Fj (0)

(1 + 4T̄ τ )3/4+ j/4
. (57)

Especially, for particle-number dynamics F0(τ ) = N (τ )
/N (0),

N (τ )

N (0)
= 1

(1 + 4T̄ τ )3/4
. (58)

Equation (58) reveals an unexpected characteristic of the
system: contrary to conventional N -body recombination the-
ory [40], the dissipation dynamics here do not follow a typical
“two-body” loss pattern. The governing equation for an N -
body loss is generally expressed as

d

dτ

(
N (τ )

N (0)

)
= −KN

(
N (τ )

N (0)

)N
, (59)

where KN represents the constant N -body recombination rate
coefficient. The general solutions to Eq. (59) are straightfor-
ward:

N (τ )

N (0)
=

{
exp(−K1τ ) for N = 1,

[1 + (N − 1)KN τ ]−1/(N−1) for N > 1.
(60)

By comparing Eqs. (58) and (60), we deduce that

N = 7
3 , (61)

indicating a “fractional-body” loss process.
In the high-initial-temperature limit, it is possible to per-

form the inverse Mellin transform to find the full dynamics
of N (k̄, τ ). Equation (57) with Mellin frequency s as the
argument is expressed as

M[N (k̄, τ )](s) = 2√
π

T̄ (s−1)/2(1 + 4T̄ τ )−(5+s)/8�(s/2 + 1).

(62)
We first note that

M−1[(1 + 4T̄ τ )−(5+s)/8](k̄) = (1 + 4T̄ τ )−3/4

× δ[k̄ − (1 + 4T̄ τ )−1/8]. (63)

And from Eq. (41), we know that

N (k̄, 0)
∣∣
z→0 = M−1

[
2√�π

T̄ (s−1)/2�(s/2 + 1)

]
(k̄)

= 4k̄2

√
π T̄ 3/2

exp

(
k̄2

T̄

)
. (64)

Inverse Mellin transform has a property to convert multiplica-
tion to convolution [41]:

M−1[ f (s)g(s)] =
∫ ∞

0

dy

y
M−1[ f ]

(
x

y

)
M−1[g](y). (65)
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(a)

(b)

FIG. 1. Log-log plot of F0(τ )/F0(0) to F3(τ )/F0(0) from top to
bottom for (a) T̄ = 1 and (b) T̄ = 0 showing the power-law tails of
different Fn. The black dashed lines are 1/τ eye guides demonstrating
the power law of F1 always has x1 = 1 in a long time

Combining Eqs. (63), (64), and (65), we can perform the
inverse transform of Eq. (62), which gives

N (k̄, τ ) = 4k̄2

√
π T̄ 3/2(1 + 4T̄ τ )3/8

exp

(
−(1 + 4T̄ τ )1/4 k̄2

T̄

)
.

(66)

An important observation on Eq. (66) is that the momentum
distribution is kept to be a Gaussian (the additional k̄2 comes
from measurement d3k) for long-time dynamics, which mo-
tivates us to interpret it as an equilibrated profile. Indeed, we
will see in Sec. (V B), Eq. (66) has the same expression as its
corresponding thermal ansatz. In other words, the system can
automatically be kept in equilibrium even without any elastic
collision in the high-initial-temperature limit.

2. Padé approximant method for arbitrary initial temperatures

Generally, we conjecture all Fj decays in the power-law

manner, i.e., Fj
τ→∞−−−→ Ajτ

−x j . The conjecture is correct for
high-initial-temperature exact solutions (57). We also have
numerical results in different temperatures verifying the con-
jecture shown in Fig. 1. Substituting this long-time ansatz into
Eq. (44),

x1 = 1 and x j+1 − x j = 1 − x0, (67)

x jA j = AjA1 + Aj+1A0. (68)

From Eq. (67), one sees that

x j = 1 + ( j − 1)(1 − x0) (69)

is an arithmetic sequence with a common difference depend-
ing on x0. Particularly, no matter the value of x0, x1 is always
exactly 1, which, again, has been verified by numerical results
in Fig. 1. This inspires us to construct approximation starting
from F1. A suitable functional form for F1 is the Padé approx-
imant [m/n]F1 (τ ), which is defined as

[m/n]F1 (τ ) =
∑m

j=0 a jτ
j

1 + ∑n
k=0 bkτ k

,

satisfying
d j

dτ j
[m/n]Fl (τ ) = d j

dτ j
Fl (τ )

( j = 0, 1, . . . , n + m), (70)

since if n = m + 1, limτ→∞[m/n]F1 (τ ) ∝ 1/τ . We expect in
the limit n = m + 1 → ∞, Eq. (70) can reproduce F1 in
an exact form. However, due to the difficulty of counting
C[ j; {s1, s2, . . . , sn+1}], practically we cannot construct Padé
approximant at a very high order.

The simplest construction is [0/1]F1 , which only requires
the information of F1(0) and d

dτ
F1(0). The latter can be di-

rectly read from Eq. (44), which is

d

dτ
F1(0) = −[F1(0)]2 − F2(0). (71)

Because 1/(1 − x) = 1 + x + O(x2), one can directly write
the [0/1]F1 to be

F1 � [0/1]F1 = F1(0)

1 +
[

F1(0) + F2(0)

F1(0)

]
τ

. (72)

One may suspect that Eq. (72) is not accurate enough,
especially for a short time, since it is the lowest-order ap-
proximation. However, as shown in Fig. 2, higher-order Padé
approximants do not improve much. Therefore, we can be-
lieve Eq. (72) is a very reliable approximation of F1(τ ), and
in the following discussion we will regard F1 = [0/1]F1 . For
j = 0, Eq. (44) reduces to

dF0(τ )

dτ
= −2F0(τ )F1(τ ), (73)

thus we immediately obtain F0(τ ) when we know F1(τ ). Sub-
stituting Eq. (72) into (73),

N (τ )

N (0)
= F0(τ ) =

(
1 +

[
F1(0) + F2(0)

F1(0)

]
τ

) −2F2
1 (0)

F2
1 (0)+F2 (0)

. (74)

Again, by comparing Eqs. (74) and (60), we can extract N for
this general situation:

N = 3

2
+ F2(0)

2F1(0)2
. (75)

In the high-initial-temperature limit [i.e., Eq. (51)], as we
expect, Eq. (75) has asymptotic value N = 7

3 , which is
consistent with the exact solution (61) solved above. Further-
more, one can also check that Eq. (74) recovers Eq. (58)

043312-8



INELASTIC QUANTUM BOLTZMANN EQUATION OF … PHYSICAL REVIEW A 111, 043312 (2025)

(a)

(b)

FIG. 2. Two examples demonstrating how accurate lowest-order
Padé approximant is. (a) T̄ = 1. The expressions used for three
approximants are [0/1]F1 = 1.6967

1+4.3677τ
, [1/2]F1 = 1.6967+1.0153τ

1+4.9661τ+2.6396τ2 ,

and [2/3]F1 = 1.6967−165.80τ−107.40τ2

1−93.352τ−490.09τ2−279.03τ3 . (b) T̄ = 0. The expressions
used for three approximants are [0/1]F1 = 0.6

1+1.3143τ
, [1/2]F1 =

0.6+0.19325τ

1+1.6364τ+0.44144τ2 , and [2/3]F1 = 0.6+0.54310τ+0.067246τ2

1+2.2195τ+1.3199τ2+0.15788τ3 .

exactly. We can also extract the asymptotic value for the
zero-initial-temperature value as well. The asymptote of the
polylogarithm function at the zero-temperature limit z → ∞
is given by [39]

−Lis(−z)
z→+∞−−−−→ ln(z)s

�(s + 1)
. (76)

Correspondingly,

−Lis1

[
Li−1

s2
(−x)

] x→+∞−−−−→ [�(1 + s2)x]s1/s2

�(1 + s1)
, (77)

Fj (0)
T̄ →0−−→ 3

3 + 2 j
. (78)

Hence,

N T̄ →0−−→ 44
21 , (79)

which is still slightly larger than 2. As shown in Fig. 3(a),
the two limits, Eqs. (61) and (79), are smoothly connected
by a monotonically decreasing N with lowering temperatures.
Consequently, the two-body dissipation dynamics in homoge-
neous single-component Fermi gases over all the temperatures
cannot be described by conventional two-body decay where
N = 2.

Obtaining the full description of the momentum dis-
tribution dynamics is almost impossible for this arbitrary

(a)

(b)

FIG. 3. Initial-temperature dependence of (a) N in Eq. (75) and
(b) γ in Eq. (86).

temperature scenario. The reason is that the inverse Mellin
transform is generally too hard to perform. Below, we only
show the infinite-time limit of momentum distribution dy-
namics. Practically, this is not a very relevant regime to
experimental observation since, after a long time, the total
number of particles left in the system will be too few to mea-
sure. However, this is still interesting from a pure theoretical
aspect because long-term behavior tells whether the system
can deviate from equilibrium.

According to Padé approximant (72) and its consequence
(74), we can explicitly express

x0 = 2F 2
1 (0)

F 2
1 (0) + F2(0)

. (80)

A0 and A1, the coefficient of decay power law in the long-time
limit

A0 =
[

F1(0) + F2(0)

F1(0)

] −2F2
1 (0)

F2
1 (0)+F2 (0)

, A1 = F1(0)2

F1(0)2 + F2(0)
.

(81)

Equation (68) provides a recursion relation of Aj , thus we can
express a general Aj with A0 and A1:

Aj = (x0 − A1)

(
A0

1 − x0

)1− j(A1 − 1

x0 − 1

)
j−1

. (82)
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With Eqs. (69) and (82), we obtain the long-time asymptote
of Fj (τ ), or the Mellin transform of N (k̄, τ )|τ→∞:

M[N (k̄, τ )](s)
∣∣
τ→∞ = (x0 − A1)

(
A0

1 − x0

) 3
2 − s

2

×
(

A1 − 1

x0 − 1

)
s
2 − 3

2

τ− 1
2 [(1−x0 )s+3x0−1],

(83)

as we note that

M
[

exp(−c1k2)kc2
]
(s) = 1

2
c
− s

2 − c2
2

1 �
( s

2
+ c2

s

)
, (84)

the inverse Mellin transform of Eq. (83) can be obtained as

N (k̄, τ )
∣∣
τ→∞ = 2A2

0(x0 − A1)

(x0 − 1)2�
(

A1−1
x0−1

)τ 1−2x0

×
⎛
⎝
√

A0

1 − x0
τ

1
2 − x0

2

⎞
⎠

2(1+A1−2x0 )
x0−1

× exp

(
−A0τ

1−x0

1 − x0
k̄2

)
k̄γ , (85)

where

γ = 2(A1 − 1)

x0 − 1
− 3. (86)

First, it can be checked that Eq. (66) is consistent with Eq. (85)
in the same limit, i.e., γ = 2. However, γ will no longer be
2 for a lower initial temperature, making the profile clearly
of a nonequilibrium shape. For example, using Eq. (78), we
find in the zero-initial-temperature limit, γ = 19

2 . Figure 3(b)
shows the general calculation result of γ . Together with the
conclusion we made previously in Sec. V A 1, the complete
picture of the system’s dissipation dynamics is as follows:
with a high enough initial temperature, the system can be kept
under equilibrium without elastic collision, while for lower
initial temperatures, generally the two-body loss drives system
away from being thermalized.

B. Effective temperatures and thermal ansatz

1. Dynamics of effective temperatures

Two-body dissipation is a crucial experimental consider-
ation due to its heating effect on systems, which poses a
significant obstacle to cooling processes [42,43]. This phe-
nomenon, known as “antievaporation,” was originally studied
in the context of harmonically trapped systems. The conven-
tional explanation for this heating mechanism is as follows:
the center of the harmonic trap, being much denser than the
periphery, experiences a higher rate of particle loss. Since par-
ticles in this region possess lower potential energy compared
to those in other areas, their loss leads to an increase in the
average energy per particle, consequently raising the system’s
temperature.

Our investigation aims to determine whether a simi-
lar phenomenon occurs in homogeneous systems. However,
since dissipative dynamics generally drive systems out of

equilibrium, we must first establish appropriate effective tem-
peratures. We define these by hypothetically thermalizing the
systems for measurement purposes. Thus, a system’s effective
temperature T (t ) is defined as the temperature of a thermal-
ized system with identical particle number and total energy.
Mathematically, we describe this corresponding thermalized
system using a thermal ansatz:

N th(k̄, τ ) ≡ F0(τ )N∗(k̄, τ ), (87)

where N∗(k̄, τ ) is the normalized thermal momentum distri-
bution:

dk̄N∗(k̄, τ ) ≡ d

(
k̄

k̄F (τ )

)
3[k̄/k̄F (τ )]2

exp
[

[k̄/k̄F (τ )]2

T̄ (τ )/T̄F (τ )

]
z(τ )−1 + 1

,

z(τ ) ≡ −Li−1
3/2

(
− 4T̄F (τ )3/2

3
√

π T̄ (τ )3/2

)
. (88)

This expression is constructed by replacing all kF and TF

at τ = 0 with dynamic variables. The effective Fermi mo-
mentum kF (τ ) and effective Fermi temperature TF (τ ) are
defined as

F0(τ ) = k̄F (τ )3 = T̄F (τ )3/2. (89)

Equation (89) ensures that the thermal system maintains the
same particle number as the nonequilibrium profile. The total
energy for this thermal ansatz is given by

E th(τ ) =
∫

dk̄ k̄2N th(k̄, τ )

= −9
√

π T̄ (τ )5/2

8
Li5/2

[
Li−1

3/2

(
− 4F0(τ )

3
√

π T̄ (τ )3/2

)]
.

(90)

We then implicitly determine T̄ (τ ) by solving

F1(τ ) = E th(τ ). (91)

Figure 4 illustrates the dynamics of effective temperatures for
four different initial temperatures. To assess whether the sys-
tem is “cooled” or “heated,” we employ two distinct criteria:
one examines changes in the physical effective temperature
T̄ (τ ) = T (τ )/TF (0), while the other considers changes in
the reduced effective temperature T̄ (τ )/T̄F (τ ) = T (τ )/TF (τ ).
In Fig. 4(a), based on the first criterion, we observe that
the physical effective temperature decreases at high initial
temperatures. This can be attributed to the momentum de-
pendence in the inelastic collision integral (22): particles
with higher momenta are more likely to undergo inelastic
collisions. Consequently, the chemical reaction in the sys-
tem exhibits momentum selectivity, preferentially removing
higher-energy particles and thus cooling the system. Con-
versely, at sufficiently low temperatures, inelastic collisions
have the opposite effect, increasing the physical effective
temperature as any perturbation to the Fermi sea generates
excitations. Examining the reduced effective temperature in
Fig. 4(b) reveals that, regardless of the initial temperature,
inelastic collisions consistently drive the system away from
quantum degeneracy.
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(a)

(b)

FIG. 4. Dynamics of effective temperatures for systems with ini-
tial temperatures T̄ (0) = 2, 1, 0.5, and 0.1 from above to below.
Solid lines denote effective temperatures extracted from general
nonequilibrium solutions of IQBE, i.e., Eqs. (74) and (72). The
dotted lines are the results of solving IQBE by assuming that the
thermal ansatz always applies. (a) The dynamics of physical effec-
tive temperature T̄ (τ ) = T (τ )/TF (0). (b) The dynamics of reduced
effective temperature T (τ )/TF (τ ).

2. IQBE solution by assuming thermal ansatz

The thermal ansatz serves a dual purpose: it not only
allows us to examine changes in effective temperatures
but also enables us to assess the deviation of dissipa-
tion dynamics from the equilibrium limit. In this context,
the equilibrium limit refers to dynamics where the sys-
tem is assumed to thermalize instantaneously, such that
N (k̄, τ ) = N th(k̄, τ ) at every moment. Physically, this limit
is equivalent to solving the IQBE with the elastic colli-
sion integral reintroduced under the constraint that elastic
collisions occur on a much shorter timescale than inelastic
collisions.

As discussed in Sec. IV, realistic scenarios often present
the opposite situation. Consequently, our analysis in Sec. V A
focuses on the IQBE while disregarding the elastic collision
integral. However, if one were to retain the elastic collision
integral, it is reasonable to expect that the exact solution would
fall between the solution presented in Sec. V A and that ob-
tained from the instant thermalization assumption. Thus, the
following analysis also provides an upper bound for potential
interaction effects within the system.

In the thermal ansatz, Eqs. (87) and (88), we need to
determine two unknown quantities: F0(τ ) and T̄ (τ ). For F0,

the equation of motion is straightforward:

dF0(τ )

dτ
=

∫
dk̄

d

dτ
N th(k̄, τ )

=
∫

dk̄ dq̄(k̄2 + q̄2)N th(q̄, τ )N th(k̄, τ ) = −F 2
0 I0,

(92)

where we utilize Eq. (39) in the second line. I0 is explicitly
expressed as

I0(τ ) = −9
√

π T̄ (τ )5/2

4F0(τ )
Li5/2

[
Li−1

3/2

(
− 4F0(τ )

3
√

π T̄ (τ )3/2

)]
.

(93)

The equation of motion for T̄ (τ ) is derived from the temporal
change of energy per particle E th = E th/F0:

dE th

dτ
= ∂E th

∂F0

dF0

dτ
+ ∂E th

∂T̄

dT̄

dτ
= −F 2

0 I0
∂E th

∂F0
+ ∂E th

∂T̄

dT̄

dτ
,

(94)
dE th

dτ
=

∫
dk̄ k̄2 dN∗(k̄, τ )

dτ
= −F0I2 + E thF 2

0 I0, (95)

where

I2(τ ) =
∫

dk̄ dq̄ k̄2(k̄2 + q̄2)N∗(q̄, τ )N∗(k̄, τ )

=
81π T̄ (τ )5Li2

5/2

[
Li−1

3/2

(
− 4F0(τ )

3
√

π T̄ (τ )3/2

)]
64F0(τ 2)

−
45

√
π T̄ (τ )7/2Li7/2

[
Li−1

3/2

(
− 4F0(τ )

3
√

π T̄ (τ )3/2

)]
16F0(τ )

. (96)

From Eqs. (94) and (95), we derive

dT̄ (τ )

dτ
= (dE th/dF0)F 2

0 I0 + E thF0I0 − F0I2

(dE th/dT̄ )
. (97)

The explicit forms of dE th/dF0 and dE th/dT̄ are obtained
from Eq. (90):

dE th

dF0
= − 2

√
π

√
T̄ Li1/2

[
Li−1

3/2

(
− 4F0(τ )

3
√

π T̄ (τ )3/2

)]

+
9
√

π T̄ 5/2Li5/2

[
Li−1

3/2

(
− 4F0(τ )

3
√

π T̄ (τ )3/2

)]
8F 2

0

, (98)

dE th

dT̄
= 3F0

√
π T̄ 3/2Li1/2

[
Li−1

3/2

(
− 4F0(τ )

3
√

π T̄ (τ )3/2

)]

−
45

√
π T̄ 3/2Li5/2

[
Li−1

3/2

(
− 4F0(τ )

3
√

π T̄ (τ )3/2

)]
16F0

. (99)

The coupled Eqs. (92) and (97) generally require numerical
solutions. However, in the high-initial-temperature limit, fol-
lowing Eq. (49), they simplify to

dF0(τ )/dτ = −3T̄ (τ )F0(τ )2,

dT̄ (τ )/dτ = −F0(τ )T̄ (τ )2. (100)
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(a) (b)

(c) (d)

FIG. 5. Comparison between thermalized momentum distribution (dotted lines) solved from the thermal ansatz and nonequilibrium
momentum distribution (solid lines) solved from Eq. (39) at different time shots τ = 0, 2, 5, and 10 denoted by cyan, magenta, yellow, and
black colors, respectively.

Solving this set of equations yields

F0(τ ) = 1

[1 + 4T̄ (0)τ ]3/4
, T̄ (τ ) = T̄ (0)

[1 + 4T̄ (0)τ ]1/4
.

(101)

Notably, F0(τ ) in Eq. (101) is identical to Eq. (58). More-
over, substituting Eq. (101) into Eqs. (87) and (88) recovers
Eq. (66), corroborating our conclusion in Sec. V A 1 that
elastic collisions play no role in systems with high initial tem-
peratures. We can also analytically study T (τ )/TF (τ ) using
Eq. (89):

T (τ )

TF (τ )
= T (0)

TF (0)

[
1 + 4T (0)τ

TF (0)

] 1
4

, (102)

which increases monotonically, consistent with our findings
in Sec. V B 1.

For general situations, we numerically solve Eqs. (92)
and (97). Figure 4 compares T̄ (τ ) and T (τ )/TF (τ ) with
the general nonequilibrium solution of the IQBE. Surpris-
ingly, except for systems initially in deep quantum degeneracy
[T (0)/TF (0) = 0.1]), all cases show remarkable similarity.
This demonstrates that for initial temperatures not excessively
low, systems without elastic collisions remain close to equilib-
rium for reasonable periods. Figure 5 provides a more intuitive
comparison of N (k̄, τ ) between nonequilibrium solutions cal-
culated using Eq. (39) and results from the thermal ansatz.

VI. DYNAMICS OF HARMONICALLY TRAPPED SYSTEMS

This section examines systems confined in a harmonic
trap, where the dynamics are governed by Eq. (5). Unlike
Eq. (6), which can be reduced to a one-dimensional equa-
tion [Eq. (39)] due to the spherical symmetry of nk, Eq. (5)

exhibits an irreducible six-dimensional spatial complexity.
This complexity renders direct numerical solutions impracti-
cal.

As with homogeneous systems, we employ dimensionless
quantities to simplify our notation. To facilitate the treatment
of phase space as a unified whole, we introduce two distinct
length scales for dimensionless representations: the inverse of
the Fermi momentum 1/ktrap

F and the Thomas-Fermi radius
Rtrap

F . These are defined as follows: For one-dimensional sys-
tems (used in Sec. VI A),

1

ktrap
F

= 1√
2N (0)

√
h̄

Mω
, Rtrap

F =
√

2N (0)

√
h̄

Mω
. (103)

For three-dimensional systems,

1

ktrap
F

= [48N (0)]−
1
6

√
h̄

Mω
, Rtrap

F = [48N (0)]
1
6

√
h̄

Mω
.

(104)

In 1D systems, ω represents the angular frequency of the
trap. For 3D cases, it denotes the geometric mean of angular
frequencies in all three directions:

ω = (ωxωyωz )1/3. (105)

Our notation for dimensionless quantities follows these con-
ventions:

(i) Quantities in units of 1/ktrap
F or its derivatives [such as

ktrap
F (wave vector), E trap

F = h̄2(ktrap
F )2

2M (energy), T trap
F = E trap

F /kB

(temperature)] are denoted with a “bar” (e.g., k̄).
(ii) Quantities in units of Rtrap

F or its derivatives are denoted
with a “tilde” (e.g., r̃).

For anisotropic 3D systems (ωx �= ωy �= ωz), we introduce
a modified position vector x, related to the physical position
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r by

x =
(ωx

ω
rx,

ωy

ω
ry,

ωz

ω
rz

)
. (106)

This formulation provides a consistent framework for analyz-
ing trapped systems across different dimensionalities and trap
geometries.

A. Fast-flowing approximation

To address the computational challenges posed by the six-
dimensional nature of the IQBE, we introduce the fast-flowing
approximation (FFA). This approach assumes that the distri-
bution function f (k, r, t ) maintains hyperspherical symmetry
throughout the entire phase space, such that f (k, r, t ) ≡
f (R, t ), where

R =
√

k̄2 + x̃2 =
√ ∑

i=x,y,z

(
k̄2

i + ω2
i r̃2

i /ω
2
)
. (107)

We assume that at t = 0, the systems are prepared in
thermalized states, which inherently possess hyperspherical
symmetry:

f (k, r, 0) = f (R, 0) = 48

exp
(

R2

T̄

)
(ztrap)−1 + 1

, (108)

where the fugacity in trapped systems is given by

ztrap = −Li−1
3

(
− 1

6T̄ 3

)
. (109)

The validity of this approximation for systems that have
evolved over time can be justified by considering the disparate
timescales involved in experimental setups. Harmonic trap
dynamics typically operate on a much faster timescale than
two-body relaxation processes. For instance, with an average
trap frequency of 2π × 100 Hz, the associated timescale is
approximately 1 ms. In contrast, the typical relaxation pro-
cess unfolds over several seconds. This significant separation
of timescales implies that the molecular cloud’s dynamics
are substantially faster than the relaxation reactions. Conse-
quently, we can neglect inelastic collisions within short time
intervals, allowing the system to reach a quasisteady state. It
can be readily demonstrated that the steady-state phase-space
distributions, obtained by solving[

h̄k
M

∇r − ∇rUext · ∇k

h̄

]
f = 0 (110)

indeed exhibit the hyperspherical symmetry f (k, r, t ) =
f (R, t ). This fast-flowing approximation provides a tractable
approach to modeling the complex dynamics of trapped sys-
tems while capturing the essential physics of the problem.

1. Validating FFA with 1D analog

To validate the fast-flowing approximation (FFA), we ini-
tially applied it to a simplified one-dimensional version of the
problem. The dimensionless form of the inelastic Boltzmann
equation in this context is

df

d (ωt )
=

[
x̃∂k̄ − k̄∂x̃ − G

∫
dq̄

2π
(k̄2 + q̄2) f (q̄, x̃)

]
f (k̄, x̃),

(111)

FIG. 6. Comparison between brute-force numerical solutions of
Eq. (111) with different G and the result from Eq. (112). The initial
temperature is set to be T̄ = 1 in 1D, i.e., f (k̄, x̃, 0) = [exp(k̄2 +
x̃2)/(e − 1) + 1]−1. Inset: phase-space density f (k̄, x̃, τ ) at τ = 5.

where G represents the dimensionless reaction strength, with
higher values indicating more rapid relaxation, it is important
to note that Eq. (111) serves as an analog to the 3D problem
we are focusing on and may not accurately describe a phys-
ical 1D or quasi-1D system. Within the FFA framework, this
equation simplifies to

df (R)

dτ
= − 1

4π2

∫ 2π

0
dθ

∫ ∞

0
dq̄(R2 cos2 θ + q̄2)

× f (
√

R2 sin2 θ + q̄2) f (R), (112)

where τ = Gωt and R =
√

k̄2 + x̃2.
We performed numerical solutions of Eq. (111) for various

G values and compared them with the predictions of Eq. (112),
as shown in Fig. 2. The results demonstrate improved agree-
ment for smaller G values, supporting the assumption that
FFA is valid when the reaction rate is sufficiently slow. The
inset of Fig. 6 provides an intuitive visualization of the phase-
space density at τ = 5 for different G values. This reinforces
the assumption that f maintains spherical symmetry through-
out the process, further validating the FFA approach. These
findings provide a solid foundation for applying the fast-
flowing approximation to more complex three-dimensional
systems where direct numerical solutions are computationally
prohibitive.

2. 3D IQBE under FFA

We now extend our analysis to realistic 3D cases. First, we
express Eq. (5) in dimensionless form

df (k̄, x̃, t̄ )

dt̄
=

[
− h̄ω

E trap
F

k̄ · ∇x̃ + h̄ω

E trap
F

x̃ · ∇k̄

]
f (k̄, x̃, t̄ )

+ 24π Im(v̄p)
∫

d3q̄

(2π )3

× (q̄2 + k̄2) f (k̄, x̃, t̄ ) f (q̄, x̃, t̄ ). (113)
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After nondimensionalization, the normalization of f (k̄, x̃, t̄ )
becomes ∫

d3x̃
d3k̄

(2π )3
f (k̄, x̃, t̄ ) = N (t )

48N (0)
. (114)

This additional factor arises from ktrap
F Rtrap

F = (48N (0)∏
i=x,y,z ωi/ω)1/3. For numerical convenience, we redefine

the dimensionless phase-space density as F (k̄, x̃, t̄ ) = 48 f
(k̄, x̃, t̄ ). Equation (113) can then be rewritten as

dF (k̄, x̃, τ trap)

dτ trap

=
[

2h̄ω

π Im(v̄p)E trap
F

k̄ · ∇x̃ − 2h̄ω

π Im(v̄p)E trap
F

x̃ · ∇k̄

]
F (k̄, x̃, t̄ )

−
∫

d3q̄

(2π )3
(q̄2 + k̄2)F (k̄, x̃, τ trap)F (q̄, x̃, τ trap),

(115)

where τ trap = π
2 Im(v̄p)t̄ = −π h̄[ktrap

F (0)]5

4M Im(vp)t .
The FFA allows us to express F (k̄, x̃, τ trap) solely in terms

of the hyperradius R =
√

k̄2 + x̃2, i.e., F (k̄, x̃, τ trap) = F
(R, τ trap). Consequently,[

− 2h̄ωk̄ · ∇x̃

π Im(v̄p)E trap
F

+ 2h̄ωx̃ · ∇k̄

π Im(v̄p)E trap
F

]
F (R, t̄ ) = 0. (116)

To convert other terms to hyperspherical coordinates, we em-
ploy the necessary integral measures in Eq. (115):∫

d3x̃ d3k̄
dF (k̄, x̃, τ trap)

dτ trap

=
∫

d�(5) dF (R, τ trap)

dτ trap

= −
∫

d�(5)
∫

d3q̄

(2π )3
(q̄2 + R2h)

× F (R, τ trap)F (
√

q̄2 + R2(1 − h), τ trap), (117)

where �(5) is the solid angle in five dimensions (5D) with the
measure

d�(5) = sin4(θ1) sin3(θ2) sin2(θ3) sin(θ4)dθ1dθ2dθ3dθ4dφ

(118)

and h is a function of �(5):

h[�(5)] = cos2 θ1 + sin2 θ1 cos2 θ2 + sin2 θ1 sin2 θ2 cos2 θ3.

(119)

The ranges of polar angles θ1 to θ5 are 0 to π , and the range
of azimuth angle φ is 0 to 2π . As

∫
d�(5) = π3, Eq. (117)

simplifies to

dF (R, τ trap)

dτ trap
= − 2

π4

∫
dθ1dθ2dθ3 sin4 θ1d sin3 θ2d sin2 θ3

×
∫

dq̄ q̄2(q̄2 + R2h)F (R, τ trap)

× F (
√

q̄2 + R2(1 − h), τ trap). (120)

FIG. 7. Reproducing experimental data in Ref. [26] by numer-
ically solving Eq. (120). Yellow and blue colors represent systems
with initial temperatures T̄ = 1.26 and 0.48, respectively. Solid lines
are our numerical results, and circle symbols are raw experimental
data reported in Ref. [26].

Equation (120) represents the FFA of a 3D harmonically
trapped system suitable for numerical analysis. To interpret
results, we can use the following properties of F (R, τ trap) to
obtain the normalized total number of particles and average
energy per particle:

N (τ trap)

N (0)
= 1

8

∫ ∞

0
dR R5F (R, τ trap), (121)

E (τ trap)

N (τ trap)
= 1

3

∫ ∞
0 dR R7F (R, τ trap)∫ ∞
0 dR R5F (R, τ trap)

. (122)

Figure 7 demonstrates the application of this approach
to reproduce experimental data from Ref. [26] by numeri-
cally solving Eq. (120). The results for systems with initial
temperatures T̄ = 1.26 and 0.48 are shown, with solid lines
representing our numerical results and circle symbols indicat-
ing raw experimental data from Ref. [26].

3. Comparison with experimental data

To demonstrate the predictive power of Eq. (120), we re-
produce the experimental measurements reported in Ref. [26].
Using the raw data provided in Ref. [26], we analyze two de-
cay measurement sets with initial reduced temperatures T̄ =
1.26 and 0.48. The imaginary part of the scattering volume is
set to Im(vp) = −(118a0)3, consistent with previous studies
[33,36].

Figure 7 presents a comparison between the dynamics
predicted by Eq. (120) and the raw experimental data using
the dimensionless unit system introduced in this section. Our
theoretical calculations show excellent agreement with the
experimental results, even over extended timescales. Specif-
ically, we achieve good correspondence up to τ trap = 100 for
the T̄ = 1.26 sample and τ trap = 25 for the T̄ = 0.48 sample.
These dimensionless times translate to a physical duration
of approximately 6 s, demonstrating the robustness of our
approach in capturing long-term system behavior.
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FIG. 8. Comparison between the fast-flowing approximation cal-
culation at T̄ = 0.1 (solid line) and predictions from Ref. [33]
(dashed lines) using different phenomenological heating rates h̄.

It is worth mentioning that the IQBE approach is also ap-
plicable and convenient to be used for reproducing short-time
dynamics and comparison with experimental loss rates (see
Appendix B).

4. Comparison with theory explicitly considering antievaporation

Previous theories have studied the antievaporation process
with the temperature increase strictly linearly. For instance,
Ref. [33] introduced a phenomenological heating rate param-
eter h to account for linear temperature increase. To directly
compare with these approaches, we examine the particle-
number dynamics predicted by both methods. For a fair
comparison, we rewrite the result from Ref. [33] in the di-
mensionless form

N (t )

N (0)
= (1 + h̄τ trap/T̄ )3/2

1 +
√

2
∫

k̄2 f (k̄, r̃, 0)d3r dk̃

8π3/2hT̄

⎛
⎝
√

1 + h̄τ trap

T̄
− 1

⎞
⎠

.

(123)

The dimensionless phenomenological heating rate h̄ is defined
as h̄ = − 4Mh

π h̄[ktrap
F (0)]5T trap

F Im(vp)
.

Figure 8 demonstrates the comparison at T̄ = 0.1. We
plot our fast-flowing approximation result alongside predic-
tions from Ref. [33] using three different phenomenological
heating rates: h̄ = 0.005, 0.01, and 0.02. These values corre-
spond to particle numbers N ≈ 46 000, 24 000, and 14 000,

respectively, based on the experimental heating rate of ap-
proximately 20 nK/s reported in Ref. [33]. Regardless of how
we tune the phenomenological parameter h̄, the curves from
Ref. [33] differ slightly from our predictions. This suggests
that the temperature increase during the antievaporation devi-
ates from a straight line.

Note that, in comparison, in our framework, heating
emerges naturally from the underlying microscopic physics of
inelastic collisions and trap geometry. Given a fixed (and inde-
pendently measured) complex scattering volume, our model
fully determines the system’s evolution without additional
free parameters.

B. Thermal ansatz

Equation (120) is significantly more complex than its
homogeneous counterpart, for which we lack an analytical
solution method. However, drawing on our experience with
homogeneous systems, where the thermal ansatz effectively
describes dynamics at high initial temperatures, we conjecture
that a similar approach may provide a good approximation for
trapped systems with high initial temperatures.

Following the procedure in Sec. V B 1, we introduce the
thermal ansatz

F th(R, τ trap) ≡ F0(τ trap)F∗(R, τ trap) (124)

into Eq. (120), where F0 represents N (τ trap)/N (0) and

dRF∗(R, τ trap) ≡ dR

F0(τ trap)

48

exp
(

R2

T̄ (τ trap )

)
(ztrap)−1 + 1

,

ztrap(τ trap) = −Li−1
3

(
− F0(τ trap)

6T̄ 3(τ trap)

)
.

(125)

Following a derivation similar to that in Sec. V B 1, we obtain
coupled equations for F0(τ trap) and T̄ (τ trap):

dF0

dτ trap
= −I5F 2

0 , (126)

dT̄

dτ trap
= (dE th/dF0)F 2

0 I5 + E thF0I5 − F0I7

(dE th/dT̄ )
, (127)

where

I5 = − 1

4π4

∫
dθ1dθ2dθ3 sin4 θ1d sin3 θ2d sin2 θ3

×
∫

dR
288

√
πR5T̄ 3/2ztrap

F 2
0 [exp(R2/T̄ ) + ztrap]

×
{

2hR2Li 3
2

[
− exp

(
(h − 1)R2

T̄
ztrap(τ trap)

)]

+ 3T̄ Li 3
2

[
− exp

(
(h − 1)R2

T̄
ztrap(τ trap)

)]}
(128)

and

I7 = − 1

12π4

∫
dθ1dθ2dθ3 sin4 θ1d sin3 θ2d sin2 θ3

×
∫

dR
288

√
πR7T̄ 3/2ztrap

F 2
0 [exp(R2/T̄ ) + ztrap]

×
{

2hR2Li 3
2

[
− exp

(
(h − 1)R2

T̄
ztrap

)]

+ 3T̄ Li 3
2

[
− exp

(
(h − 1)R2

T̄
ztrap

)]}
. (129)

The necessary expressions for E th, dE th/dF0, and dE th/dT̄ are
also provided below:

E th = −6T̄ 4Li4[−ztrap(τ trap)]

F0
, (130)

dE th

dF0
= 6T̄ 4Li4[−ztrap(τ trap)]

F 2
0

− 1

6T̄ 2Li2[−ztrap(τ trap)]
,

(131)
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FIG. 9. Particle dynamics obtained from the thermal ansatz,
Eqs. (126) and (127) [dashed lines], and directly solving Eq. (120)
[solid lines]. From top to bottom, T̄ (0) are set to be 2,1,0.5, and 0.1.

dE th

dT̄
= F0

2T̄ 3Li2[−ztrap(τ trap)]
− 24T̄ 4Li4[−ztrap(τ trap)]

F0
,

(132)

Figure 9 presents numerical solutions of particle dynamics
from Eqs. (126) and (127). Comparing these results with those
from Eq. (120), we find remarkably small differences even in
the deep degeneracy regime. This close agreement might sug-
gest that the thermal ansatz is an exact solution to Eq. (120).

However, a careful examination of the radial phase-space
distribution N (R, τ trap) = R5F (R, τ trap)/8, shown in Fig. 10,
reveals a more nuanced picture. For systems starting from
high initial temperatures, the profiles remain approximately
thermal throughout the evolution. In contrast, for low initial
temperatures, despite the particle dynamics appearing similar

to those given by the thermal ansatz, the system is, in fact,
highly nonequilibrium.

1. High-initial-temperature analytical solution

For high initial temperatures, the integrals in Eqs. (128)
and (129) can be explicitly evaluated:

I5
T̄ →∞−−−→ 6

π7/2
√

T̄

∫
dθ1dθ2dθ3 sin4 θ1 sin3 θ2 sin2 θ3

(2 + h)

(h − 2)4

= A√
T̄

� 0.190√
T̄

(133)

and

I7
T̄ →∞−−−→ 2

√
T̄

π7/2

∫
dθ1dθ2dθ3 sin4 θ1 sin3 θ2 sin2 θ3

(6 + 5h)

(h − 2)5

= B
√

T̄ � 0.175
√

T̄ . (134)

Consequently, Eqs. (126) and (127) simplify to

dF0

dτ trap
= −AF 2

0 T̄ −1/2, (135)

dT̄

dτ trap
= (A − B)F0T̄ 1/2. (136)

Solving these equations yields

F0(τ trap) = 1[
1 + (3A−B)τ trap

2T̄ (0)1/2

]2A/(3A−B) , (137)

T̄ (τ trap) = T̄ (0)

[
1 + (3A − B)τ trap

2T̄ (0)1/2

]2−4A/(3A−B)

. (138)

(a) (b)

(c) (d)

FIG. 10. Comparison between radial phase-space distributions obtained from the thermal ansatz (dotted lines) and by directly solving
Eq. (120) (solid lines) at different time shots τ trap = 0, 10, 20, and 50 denoted by cyan, magenta, yellow, and black colors, respectively.
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Notably, Eq. (137) takes the form of Eq. (60), describing
an N -body decay with

N = 5A − B
2A � 2.041 67. (139)

This result contrasts with our findings in Sec. V A 1, where
we demonstrated that for homogeneous systems, N = 7

3 .
This difference underscores the significant impact of flowing
dynamics in trapped systems on the two-body dissipation
behavior.

VII. SUMMARY

In this companion paper, we present a comprehensive anal-
ysis of the inelastic quantum Boltzmann equation (IQBE)
for single-component Fermi gases in both free space and
harmonic traps. Our approach begins by deriving the IQBE
from a non-Hermitian Hamiltonian and demonstrating that
elastic collisions play a minimal role in the dynamics of
typical experimental systems. For homogeneous systems, we
employ the Mellin transform technique to solve the IQBE,
revealing that the dissipation follows an N -body decay with
a temperature dependent N . This finding challenges the
conventional understanding of two-body loss dynamics. To
address harmonically trapped systems, we introduce a fast-
flowing approximation (FFA) of the IQBE, enabling efficient
numerical calculations. This method successfully reproduces
experimental data without the need for fitting parameters,
validating its efficacy and accuracy. In both free space and
trapped scenarios, we compare our calculations with solu-
tions obtained using a thermal ansatz. Our results indicate
that the system can achieve a quasithermalized state even in
the absence of elastic collisions, except in deeply degenerate
regimes. This observation provides new insights into the ther-
malization processes in these systems.

Our study offers a comprehensive understanding of two-
body dissipative behavior in single-component Fermi gases.
The results and methodologies presented here serve as valu-
able benchmarks for calibrating relevant direct simulation
Monte Carlo (DSMC) simulations [44]. Furthermore, this
work lays the groundwork for extending contact measure-
ments using photoexcitation methods in p-wave BCS-BEC
crossover studies.

While this work focuses on the applications of IQBE in
the normal phase, recent studies have also shown a growing
interest in particle dissipation mechanisms within superfluid
regimes [45–53]. The theoretical framework and method-
ologies developed in this paper can serve as a foundation
for future extensions of the inelastic quantum Boltzmann
equation into the superfluid regime, potentially offering
new insights into the interplay between dissipation and
superfluidity.
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APPENDIX A: INELASTIC COLLISION INTEGRAL
FROM LINDBLAD EQUATION

In this Appendix, we further provide a more straight-
forward method of deriving inelastic collision integral (22)
starting from the Lindblad master equation. Compared to the
time-dependent perturbation method provided in the main
text, such a method is advantageous in its rigor, supporting
our former derivation, while being inconvenient to obtain the
elastic contribution on the same foot.

The Lindblad master equation corresponding to non-
Hermitian Hamiltonian (1) is

ih̄
dρt

dt
= [T̂ + Re(Û ), ρt ] + i{Im(Û ), ρt } − i

∑
P,m

L̂P,mρt L̂
†
P,m,

(A1)

where the jump operators L̂P,m are defined by Eq. (16) in the
main text. By right multiplying N̂k = c†

kck to both sides of
Eq. (A1) and taking trace

ih̄ Tr

(
dρ

dt
N̂k

)
= ih̄

d

dt
Tr(ρN̂k )

= Tr([T̂ + Re(Û ), ρ]N̂k ) + i Tr({Im(Û ), ρ}N̂k )

− i
∑
P,m

Tr(L̂P,mρL̂†
P,mN̂k ). (A2)

Using the cyclic property of trace,

Tr([T̂ + Re(Û ), ρ]N̂k ) = Tr(ρ[N̂k, T̂ + Re(Û )]), (A3)

Tr({Im(Û ), ρ}N̂k ) = Tr(ρ{N̂k, Im(Û )}), (A4)

Tr(L̂P,mρL̂†
P,mN̂k ) = Tr(ρL̂†

P,mN̂kL̂P,m). (A5)

Denoting Tr(ρÂ) = 〈Â〉,

ih̄
d

dt
〈N̂k〉 = 〈[N̂k, T̂ ]〉 + 〈[N̂k, Re(Û )]〉

+ i〈{N̂k, Im(Û )}〉 − i
∑
P,m

〈L̂†
P,mN̂kL̂P,m〉. (A6)

Then we can arrange the right-hand side of Eq. (A6) into
normal orders term by term. The first term is

〈[N̂k, T̂ ]〉 =
∑

q

h̄2q2

2m
〈[N̂k, N̂q]〉

=
∑

q

h̄2q2

2m
δk,q(c†

kcq − c†
qck ) = 0. (A7)
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And the second term,

〈[N̂k, Re(Û )]〉 = Re(g)

2V

∑
P,q′,m

Vm(q′)V∗
m

(
k − P

2

)〈
c†

kc†
P−kc P

2 −q′c P
2 +q′

〉

+ Re(g)

2V

∑
P,q′,m

Vm(q′)V∗
m

(P
2 − k

)〈
c†

P−kc†
kc P

2 −q′c P
2 +q′

〉

+ Re(g)

2V

∑
P,q,m

Vm
(P

2 − k
)
V∗

m(q)
〈
c†

P
2 −q

c†
P
2 +q

ckcP−k
〉

+ Re(g)

2V

∑
P,q,m

Vm
(
k − P

2

)
V∗

m(q)
〈
c†

P
2 −q

c†
P
2 +q

cP−kck
〉
, (A8)

where we define Vm(q) = 2
√

πY1m(q̂)q for convenience. It is noted that Vm(q) = −Vm(−q). By changing dummy integral
variable q′ → P/2 − q in first two summations and q → P/2 − q in other two summations, we obtain

〈[N̂k, Re(Û )]〉 = −Re(g)

V

∑
P,q,m

Vm
(
q − P

2

)
V∗

m

(
k − P

2

)〈c†
kc†

P−kcqcP−q〉

+ Re(g)

V

∑
P,q,m

Vm
(
q − P

2

)
V∗

m

(
k − P

2

)〈c†
qc†

P−qckcP−k〉. (A9)

Because c†
qc†

P−qckcP−k = (c†
kc†

P−kcqcP−q)†,

− 〈c†
kc†

P−kcqcP−q〉 + 〈c†
qc†

P−qckcP−k〉 = −〈c†
kc†

P−kcqcP−q〉 + 〈c†
kc†

P−kcqcP−q〉∗. (A10)

Then,

〈[N̂k, Re(Û )]〉 = −2i Re(g)

V

∑
P,q,m

Vm

(
q − P

2

)
V∗

m

(
k − P

2

)
Im〈c†

kc†
P−kcqcP−q〉. (A11)

Following almost the same procedure, the third term is evaluated to

i〈{N̂k, Im(Û )}〉 = −2i Im(g)

V

∑
P,q,m

Vm

(
q − P

2

)
V∗

m

(
k − P

2

)
Re〈c†

kc†
P−kcqcP−q〉

+ 2i Im(g)

V

∑
P,q,q′,m

Vm(q)V∗
m(q′)〈c†

P
2 +q

c†
P
2 −q

c†
kckc P

2 −q′c P
2 +q′ 〉. (A12)

It can be observed that the fourth term in Eq. (A6) has already been in the normal order and is exactly opposite to the last line of
Eq. (A12). Substituting the above expressions back to Eq. (A6), we have

d〈N̂k〉
dt

= − 2

h̄V

∑
P,q,m

Vm

(
P
2

− k
)
V∗

m

(
P
2

− q
)

[Re(g)Im〈c†
kc†

P−kcP−qcq〉 + Im(g)Re〈c†
kc†

P−kcP−qcq〉]. (A13)

From now on, we will work in the weakly interacting
and weakly reactive regimes, i.e., Re(g) and Im(g) are
small enough to treat g as a perturbative parameter. Un-
der the first-order perturbation, four-operator expectation
can be factored into a multiplication of several 〈N̂k〉 [33].
Since Eq. (A13) itself already has a first-order coupling,
the first-order perturbation of the expression is nothing
but the noninteracting limit of four-operator expectations,
which is

〈c†
kc†

P−kcP−qcq〉 → (δq,k − δP,q+k )〈c†
kc†

P−kcP−kck〉
→ (δq,k − δP,q+k )〈N̂k〉〈N̂P−k〉. (A14)

It is worth noting that one should not directly write the second
step of Eq. (A14) because

〈c†
kc†

P−kcP−kck〉 = 〈c†
kckc†

P−kcP−k〉 − δk,P−k〈c†
kcP−k〉

≈ 〈Nk〉〈NP−k〉 − δk,P/2〈Nk〉, (A15)

one finds an additional one-body term contributes. The rea-
son why it can be ignored when Eq. (A15) is substituted
into Eq. (A13), the one-body term always appears with
V1m(0) = 0.

It can be understood that the δP,q+k contribution is triv-
ial, and the δq,k term describes the momentum exchange
of two incoming particles. The consequence of taking the
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noninteracting limit is that the collision part in Eq. (A13)
would completely disappear as four-operator terms in the
middle of Eq. (A14) are all Hermitian with purely real ex-
pectation.

Substituting Eq. (A14) into (A13), we obtain

d〈N̂k〉
dt

= −2 Im(g)

h̄V

∑
q,m

Vm

(
q − k

2

)
V∗

m

(
k − q

2

)

× [〈N̂k〉〈N̂q〉 − 〈N̂k〉〈N̂P−k〉]. (A16)

Changing variable P → k + q in the second summation
above, we finally reach the same form as Eq. (21) in the main
text:

d〈N̂k〉
dt

= 4 Im(g)

h̄V

∑
q,m

∣∣∣∣Vm

(
q − k

2

)∣∣∣∣
2

〈N̂k〉〈N̂q〉

→ dNk

dt
= 3 Im(g)

h̄V

∫
d3q

(2π )3
(q − k)2NkNq, (A17)

where 〈N̂k〉 = Nkd3k and we used Unsöld theorem for l = 1:

∑
m

∣∣∣∣Vm

(
q − k

2

)∣∣∣∣
2

= 4π

(
q − k

2

)2 ∑
m

Ŷ 2
1m

(
q − k
|q − k|

)
= 3

4
(q − k)2.

(A18)

APPENDIX B: SHORT-TIME DYNAMICS
AND INITIAL LOSS RATES

The short-time (t → 0) limit of our IQBE framework pro-
vides a direct connection to experimentally measured initial
loss rates. Taking t → 0 in our formalism, nk and nq in inelas-
tic collision integral (22) are simply replaced by Fermi-Dirac
distribution [Eq. (41)]. By defining the initial loss rate β to be

dn

dt
= −βn2, (B1)

FIG. 11. Comparison between experimental data (green sym-
bols) from Ref. [26] and theoretical predictions (black solid line)
for the temperature-dependent loss rate coefficient β with Im(vp) =
(118a0 )3.

where the density n = ∫
d3k/(2π )3nk, it is straightforward to

find

β =
−144π2 h̄ Im(vp)Li 5

2
(−z)

Mλ2
T Li 3

2
(−z)

(B2)

with λT = h̄
√

2π
MkBT the thermal wavelength.

For harmonically trapped systems, a systematic procedure
accounting for the trap geometry and excluding the antievap-
oration effect is necessary for comparison with standard
experimental measurement. Under similar data processing
as in Ref. [54], Eq. (B2) can be converted to the result
of Fig. 11. Figure 11 demonstrates the excellent agreement
between our theoretical predictions and experimental mea-
surements from Ref. [26]. Compared with previous results
presented in Ref. [54], theoretical prediction in Fig. 11 is more
accurate since it is converted from an exact expression without
any interpolation.
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