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Thermodynamics of degenerate Fermi gases has been extensively studied through various aspects such
as Pauli blocking effects, collective modes, BCS superfluidity, and more. Despite this, multicomponent
fermions with imbalanced spin configurations remain largely unexplored, particularly beyond the
two-component scenario. In this Letter, we generalize the thermodynamic study of SUðNÞ fermions to
spin-imbalanced configurations based on density fluctuations. Theoretically, we provide closed-form
expressions of density fluctuation across all temperature ranges for general spin population setups.
Experimentally, after calibrating the measurements with deeply degenerate 173Yb Fermi gases under spin-
balanced configurations (N ≤ 6), we examine the density fluctuations in spin-imbalanced systems.
Specifically, we investigate two-species and four-species configurations to validate our theoretical
predictions. Our analysis indicates that interaction enhancement effects can be significant even in highly
spin-imbalanced systems. Finally, as an application, we use this approach to examine the decoherence
process. Our Letter provides a deeper understanding of the thermodynamic features of spin-imbalanced
multicomponent Fermi gases and opens new avenues for exploring complex quantum many-body systems.
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Introduction—Interacting fermions form the foundation
of diverse matter types, spanning vast energy and length
scales, from materials and ultracold matter [1,2] to nuclei
and neutron stars [3,4]. While spin populations are typi-
cally equal, imbalanced spin systems frequently occur in
various physical systems. These systems have provided
fundamental insights into exotic quantum phases, ranging
from superconductivity under applied magnetic fields [5,6]
to quark superfluidity in the early Universe [7]. Two-
component ultracold fermions with spin imbalance, in
particular, enable the study of numerous phenomena,
including exotic superfluidity at unitarity [8–12], Fermi
polarons [13,14], and Fulde-Ferrell-Larkin-Ovchinnikov
states in 1D [15–18].
While conventional two-component fermionic systems

with SUð2Þ symmetry constitute the building blocks of most
matter, large spins with enhanced SUðNÞ symmetry promise
novel quantum phenomena and insights. Recent advances
in cold atom experiments and theory have realized such
SUðNÞ many-body systems [19,20]. These include SUðNÞ
Fermi liquids [21–28], SUðNÞMott insulators [29–34], BCS
pairing in N-component systems [35–41], two-orbital

SUðNÞ fermions [42–47], and antiferromagnetic correlations
enhanced by SUðNÞ symmetry [42,48–50]. Studying
thermodynamics, particularlymeasuringdensity fluctuations
linked to isothermal compressibility through the fluctuation-
dissipation theorem, has been crucial in characterizing
SUðNÞ Fermi gases [51–54]. Experiments with deeply
degenerate gases (T=TF ≪ 1) have shown reduced density
fluctuations due to Pauli blocking [55–57]. In the spin-
balanced limit, where each species has an equal population,
mean-field theory predicts that interaction effects on thermo-
dynamics are enhanced by a factor of N − 1 [22,23,26,58].
However, the thermodynamic characterizationof spin-imbal-
anced multicomponent fermions with SUðNÞ symmetric
interaction has presented significant challenges due to the
lack of systematic understanding of interaction enhancement
in these systems.
In this Letter, we present systematic theoretical and

experimental studies of density fluctuations in multi-
component Fermi gases with SUðNÞ symmetric interactions
beyond the spin-balanced limit. We show that Hartree-Fock-
type terms in the diagrammatic expansion aremost enhanced
in the large N limit. We provide closed-form formulas for
calculating density fluctuations in Fermi gases with SUðNÞ
symmetric interactions and spin-imbalanced configurations
at finite temperatures. Experimentally,weutilize 173Ybatoms
to create deeply degenerate Fermi gases with SUðNÞ
symmetric interactions. The number of species is highly
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tunable from N ¼ 1 to 6, with adjustable proportions in
the total population. We first revisit the spin-balanced
SUðNÞ fermions, calibrating density-fluctuation measure-
ments in the N ¼ 1 system and demonstrating agreement
between our experiments and theory in the balanced
SUð6Þ system. Next, we examine systems with imbal-
anced populations, specifically two-species and four-spe-
cies configurations, validating our theoretical predictions
for general setups. Leveraging our analytical expression,
we also provide additional theoretical results supporting
the fact that interaction enhancement effects can be sig-
nificant in highly spin-imbalanced systems. Most notably,
we observe a non-monotonic dependence of density fluc-
tuations on spin population ratios originating from the
complex interplay between particle statistics, interaction
effects, and temperature. Finally, we apply density-
fluctuation measurements to determine decoherence pop-
ulations in our systems, which is qualitatively consistent
with Ramsey-like measurements.
Experimental procedure—Figure 1(a) shows our exper-

imental setup. We first produce a multicomponent degen-
erate Fermi gas via evaporative cooling in a crossed
optical dipole trap (ODT) with two horizontal 1064 nm
beams. Using optical pumping and a blast pulse [25], we
prepare atom samples with balanced or imbalanced spin
populations. To vary temperatures and densities, we
adjust the final depth of the ODT. Finally, we calibrate
the trap frequency of all three axes fω1;ω2;ω3g by
measuring the dipole mode frequency of the atom cloud.

Spin configurations are calibrated with the optical Stern-
Gerlach (OSG) effect; the inset of Fig. 2(b) shows
typical OSG images of balanced SUðNÞ. We then hold
the atom cloud in ODT for 400 ms to reach thermal
equilibrium, release the atoms, and after 20 ms free
expansion take absorption images with a 3.76 magnifi-
cation system.
Fluctuations calibration—Density fluctuation is mea-

sured by counting atom numbers in a small volume from
repeated absorption images under the same conditions.
We extract the averaged atom number N0 and variance
ΔN2

0, calculating the variance per atom η ¼ ΔN2
0=N0.

To achieve a high signal-to-noise ratio while keeping
atom movement small enough during imaging, we set
the exposure time to 40 μs. Because of our imaging
system’s aberrations and limited resolution (around
4 μm or 2 pixels), blurring occurs that reduces measured
η values below theoretical predictions [59,60]. To miti-
gate, we use 7-pixel binning with an additional constant
multiplication factor α (see End Matter). Prepared atomic
samples exhibit fluctuations in atom number and temper-
ature, affecting the extracted η. We subtract a Fermi fitting
profile from each image to exclude these effects and
calculate η from the subtracted images [61,62]. A raw and
a subtracted image are shown in Fig. 1(b). Red squares
and blue circles in Fig. 1(c) show the inverse variance
versus momentum for thermal and degenerate Fermi gas,
respectively.
Triangles and circles in Fig. 2(a) show the inverse

local fluctuation of line-of-sight integrated density profiles
measured at the trap center for SUð1Þ (i.e., noninteracting
system) and SUð6Þ spin-balanced systems. For a non-
interacting Fermi gas, it is expected to be η ¼ αf½Li1ð−z0Þ�=
½Li2ð−z0Þ�g, where Li denotes polylogarithm functions. The
fugacity z0 is implicitly givenby−Li3ð−z0Þ ¼ ½ðT3

FÞ=ð6T3Þ�,

(a) (b)

(c)

Spin

Imaging

Dipole

FIG. 1. Experimental setup for measurement of atom number
variance. (a) Degenerate Fermi gases are prepared in a cross-
dipole trap. Momentum distribution of Fermi gas samples is
measured using absorption imaging after 20 ms TOF time. (b) We
subtract a fitting profile for each image to counter total atom
number fluctuation. (c) 1=η for thermal and degenerate Fermi
gases at different k=kF. Insets: schematics for state occupation
status in the momentum space.

(a) (b)
SU(1) SU(6)Interacting

Noninteracting

FIG. 2. Thermometry for interacting degenerate SUðNÞ fer-
mions. (a) Inverse fluctuation 1=η as a function of T=TF. The
orange-solid (blue-dashed) line and orange circles (blue triangles)
are the theoretical prediction of SUð6Þ [SUð1Þ] gas multiplied
by a factor α and experimental data, respectively. The vertical
dotted line denotes the deep-degeneracy temperature T ¼ 0.2TF
where data in (b) is measured. (b) Fluctuation η for SUðNÞ gases
as a function of the number of component N. The shaded area is
the theoretical prediction considering 5% uncertainty in temper-
ature measurement.
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where the Fermi temperature TF is determined by
TF ¼ ℏðω1ω2ω3Þ13ð6Ns

0Þ
1
3.Ns

0 ¼ N0=N refers to the number
of spins of an arbitrary species. Factor α comes from the
blurring effect [59,60] mentioned above. In our experiment,
we extract α ¼ 0.52ð2Þ for the best fit (dashed line). For
noninteracting SUð1Þ gas, as the temperature goes down, the
Pauli suppression effect becomes more evident, i.e., the
number of available states decreases, and η decreases.
To validate the scaling factor α, we further compare

the theoretical prediction scaled by α with the exper-
imental data of SUð6Þ system. Since different spins exert
weak repulsive interaction with scattering length askF ≃
0.1 to each other, the expression of η of SUð1Þ system
does not apply anymore. We derive that, for a homo-
geneous SUðNÞ Fermi gas, the density fluctuation is
approximated by

η ¼
−4ðT=Thom

F Þ3=2Li1
2
ð−zhom0 Þ

3
ffiffiffi

π
p

− 3ðN − 1ÞaskhomF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T=Thom
F

p

Li1
2
ð−zhom0 Þ ; ð1Þ

where Thom
F , khomF , and zhom0 are Fermi temperature,

Fermi momentum, and noninteracting fugacity, respec-
tively. Equation (1) is based on the Hartree-Fock
approximation, which becomes exact in the large N
limit. This is because, in the diagrammatic expansion,
we inductively proved that Hartree-Fock terms of the
grand potential get NðN − 1Þm-fold enhancement at
order m. At the same time, all other diagrams are only
enhanced by NðN − 1Þm0

, where m0 < m [63]. Our
theoretical predictions are valid in the weak-interaction
regime jaskhomF j ≪ 1 [63]. For repulsive interactions
(as > 0), Eq. (1) remains accurate for all accessible
N values due to the convergence of the perturbative
series and dominance of Hartree-Fock diagrams. For
attractive interactions (as < 0), stability requires N < π=
ð2jaskhomF jÞ þ 1 to avoid collapse into a liquid phase. It
can be checked that in the zero-temperature limit
T=Thom

F → 0, Eq. (1) recovers the well-known relation
η ¼ 3

2
f½T=Thom

F �=½1þ ð2=πÞðN − 1ÞkhomF as�g [22,26,28].
To apply Eq. (1) to our system, we perform a local-
density approximation and integrate along the line of
sight of imaging. Further multiplied by the aforemen-
tioned scaling factor α ¼ 0.52, our theory [red solid line
in Fig. 2(a)] agrees well with the experimental data
(circles). Compared with SUð1Þ gas, the fluctuation for
SUð6Þ Fermi gas is even lower due to repulsive
interaction, and the effect is more pronounced in the
deeply degenerate region. Besides temperature, it is
clear that the total number of species N also influences
the interaction effect. Figure 2(b) demonstrates how
the fluctuation reduces as we gradually increase N from
1 to 6. All samples are prepared with approximately the
same temperature T=TF ≃ 0.2. At this temperature, η for
SUð6Þ gas is 16% lower than for SUð1Þ gas.

Spin-imbalanced gases—With fluctuation calibration
completed using spin-balanced systems, we now examine
spin-imbalanced systems, where numbers of particles in

each spin are NðσÞ
0 ¼ ξσNs

0; N
s
0 represents the number of

particles for the majority spin and ξ1 ¼ 1. To investigate the
influence of an imbalanced population on the system, we
study the number fluctuation of SUðNÞ system when “N” is
smoothly tuned, by which we mean we change

P

σ ξσ from
N to a different value.
We experimentally study the fluctuation in two schemes

in the deep quantum degeneracy regime, T=TF ¼ 0.2:
crossover from SUð1Þ to SUð2Þ gases by modifying ξ2
from 0 to 1 [circles in Fig. 3(a)] and crossover from SUð2Þ
to SUð4Þ by simultaneously modifying ξ3 and ξ4 from 0
to 1 while keeping ξ2 ¼ ξ1 ¼ 1 [circles in Fig. 3(b)].
We observe a nonmonotonic dependence of fluctuation
on the number of particles. The quick increase in the highly
spin-imbalanced regime is because, at a given global
equilibrium temperature T, the Fermi temperature for the
minority populations is smaller, resulting in higher T=TF
ratios. This leads to larger fluctuations in minority particles,
increasing overall averaged local fluctuations. Meanwhile,
a larger N suppresses fluctuation due to the interaction
effect, which is consistent with our analysis of balanced
systems. We obtain an analytical formula describing
the feature,

η ¼ −3π
4askhomF

P

σξσ

T
Thom
F

ðPσgσÞ2
P

σgσð1 −
P

σ0≠σgσ0 Þ
; ð2Þ

where

gσ ¼
askhomF T

1
2

ffiffiffi

π
p ðThom

F Þ12 Li12
�

Li−13
2

�

−
4ξσðThom

F Þ32
3

ffiffiffi

π
p

T
3
2

��

ð3Þ

where −1 denotes the inverse function. When ξσ ¼ 1 for all
possible σ, Eq. (2) reduces to Eq. (1). By comparing with
experimental results, especially in Fig. 3(b) where the
interaction effect is pronounced, Eq. (2) under local-density
approximation with factor α is shown to explain the
experimental data much better than calculations ignoring
interaction effects. The minor discrepancy observed
near the SUð1Þ limit in Fig. 3(a), ξσ − 1 ⪅ 0.1, may be
attributed to two factors: unstable experimental control of
the population ratio and the reduced accuracy of the
Hartree-Fock approximation in this regime. This “polaron
physics” regime [65] may be better described with more
diagrams included.
After comparing with experimental data, we further

emphasize the importance of Eq. (2) by presenting theo-
retical results in a homogeneous system. Figure 3(c) shows
the change of η as the SUð1Þ gas is smoothly tuned to the
SUð6Þ limit by changing ξσ for σ ¼ 2;…; 6 from 0 to 1 one
by one. Solid and dashed lines in the upper panel show the
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fluctuation of interacting systems ηint and noninteracting
systems ηnonint, respectively. We observe that the difference
increases as the total spin increases. Based on Eq. (1),
the ðN − 1Þas interaction enhancement in spin-balanced
SUðNÞ gases is also applicable to the inverse fluctuation,
i.e., 1=ηint− 1=ηnonint ∝ ðN − 1ÞaskhomF Thom

F =T. The dashed
lines (dotted lines in the lower panel) show our naive
generalization ½ðPσ ξσÞ − 1ÞaskhomF �Thom

F =T to the spin-
imbalanced systems. In comparison, the solid lines

show the inverse change of fluctuation based on Eq. (2).
They agree well at high temperatures and differ slightly at
low temperatures.
Changing the scheme to create the spin imbalance

brings us even more interesting results. In Fig. 3(d), we
tune all ξσ>2 simultaneously from 0 to 1 and show the
same quantities. In the upper panel, we observe a clear
increase in the difference of fluctuations of the interacting
(solid lines) and noninteracting (dashed lines) systems
at high temperatures (T=Thom

F ¼ 2 and T=Thom
F ¼ 1).

However, in deep degeneracy regimes (T=Thom
F ¼ 0.2),

the difference saturates at
P

σ ξσ ≈ 2, where each minor
species approximately has only 10% of the major pop-
ulation. Similarly, in the lower panel, comparing to the
change of inverse fluctuation in the previous case, we
obverse a much more prominent difference between the
results based on Eq. (2) and the naive generalization,
especially when the minor-major spin ratio is around 10%.
This generalized SUðNÞ interaction enhancement suggests
that compared to the interaction energy, the fluctuation is
much more sensitive to the scattering length at sufficiently
low temperatures, especially in highly imbalanced pop-
ulation setups.
Application of fluctuation measurement: Determining

decoherence—Understanding how an imbalanced popu-
lation can affect density fluctuation allows us to reveal the
decoherence dynamics in SUðNÞ Fermi gases [66–69]. We
first prepare a spin-polarized SUð1Þ Fermi gas in equi-
librium, then apply a Raman pulse to suddenly rotate the
spin to an equal superposition of N spin states. Initially,
one expects each spin to be rotated to the same super-
position state [Fig. 4(a)], and the fluctuation should be
kept the same as the SUð1Þ case. In the long time limit, the
fluctuation of gas approaches that of an SUðNÞ gas due to
the spin decoherence, whose mechanism is sophisticated,
including various interaction-induced effects [43,70] as
well as the inhomogeneity of laser intensity across the
trap. In between, we interpolate the population ratios from
SUð1Þ to SUðNÞ, i.e., ðξ1;ξ2;…;ξNÞ ¼ f1− ½ðN − 1Þ=N�ζ;
ðζ=NÞ;…; ðζ=NÞg, where ζ denotes the ratio of popu-
lation of decoherence. That is, we treat systems after
decoherence as imbalanced SUðNÞ Fermi gases discussed
previously and apply Eq. (2) with local-density approxi-
mation to calculate the fluctuations. We calculate and
show in Fig. 4(b) that η increases with ζ at T=TF ∼ 0.2,

where TF is calculated using Nð1Þ
0 at t ¼ 0. While this may

seem to contradict the lower η observed for balanced
SUðNÞ gases (Fig. 2), the effect arises from the reduction
of effective TF for each species to T∞

F ¼ TF=N in the
asymptotic limit. This leads to a higher effective temper-
ature T=T∞

F with T unchanged [see inset of Fig. 4(d)] that
dominates over interaction effects, resulting in enhanced
density fluctuations. Experimentally, we measure the
density fluctuation for different holding times after spin
rotation. Squares, triangles, and circles with error bars in
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FIG. 3. Density fluctuation η of spin-imbalanced systems.
(a) Circles show the experimental data of η as a function of
P

σ ξσ , with varying ξ2 from 0 to 1. Solid lines and dashed lines
show the theoretical prediction of an interacting and noninteract-
ing system, respectively, with askF ¼ 0.1 and T=TF ¼ 0.2. The
shaded areas denote the error considering 3% temperature
uncertainty. (b) Comparing to (a), instead of varying ξ2, ξ3,
and ξ4 are simultaneously changed from 0 to 1 while ξ2 and ξ1 are
kept at 1. (c) Theoretical predictions of η in homogeneous
systems without correcting factor α based on Eq. (2). The upper
panel shows how η changes when ξσ for σ ¼ 2;…; 6 are tuned
from 0 to 1 one by one as illustrated by the chart schematic. Solid
lines are results of interacting systems ηint with askhomF ¼ 0.1,
while dashed lines are ηnonint for noninteracting systems with
askhomF ¼ 0. The solid line in the lower panel shows the difference
in the inverse fluctuation between interacting and noninteracting
systems. The dotted lines show a naive generalization of results
from spin-balanced systems. (d) Same plot as (c), except that
σ ¼ 2;…; 6 are tuned from 0 to 1 simultaneously.
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Fig. 4(c) show the fluctuation for spin number N ¼ 1, 2, 3,
respectively, as a function of holding time. We observe
that the fluctuation increases faster when N is larger. Blue
and orange circles in Fig. 4(d) show the relative change of
fluctuations and decoherence estimated based on Fig. 4(b)
averaged between 40 and 100 ms holding time as a
function of spin number. We find a <10% increase of η
after the Raman pulse for N ¼ 5. This change in density
fluctuation corresponds to around ∼5% atoms undergoing
decoherence (qualitatively confirmed by double-pulse
Ramsey-like spectroscopy; see End Matter).
Conclusion—To summarize, we have examined density

fluctuations in multicomponent Fermi gases with SUðNÞ
symmetric interactions, providing analytical formulas for
general spin-imbalanced configurations and demonstrating
agreement between theory and experiments with 173Yb
atoms. This Letter establishes a foundation for studying
quantum systems across various fields, from condensed
matter physics to quantum chromodynamics, where under-
standing the thermodynamics of multicomponent systems
with imbalanced populations is crucial. As an immediate
application, we have demonstrated how density-fluctuation
measurements can be used to monitor decoherent popula-
tions, establishing crucial fluctuation-based thermometry

for multicomponent Fermi gases. Our results open new
possibilities for exploring physics in imbalanced multi-
component systems, such as the multicomponent polaron
problem. Furthermore, by combining orbital Feshbach
resonance with oscillating magnetic fields [71,72], we
could potentially achieve strong interactions between one
spin component and several others. This approach could
further enhance the interaction effects and help drive the
gas into the superfluid regime.
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FIG. 4. Density fluctuation during spin decoherence. (a) A
schematic showing the Raman pulse changes the gas in a single
spin state to a coherent spin state, followed by decoherence.
(b) Relative difference in variance per atom η between the
postdecoherence state ηζ and initial state η0 for quenching to
different N ¼ ð2; 3;…; 6Þ at temperature T ¼ 0.2TF [based on
Eq. (2)]. (c) Experimental measurement of η for spin-polarized
gas quench to spin N state (N from 1 to 3). Dashed lines are linear
fits. (d) Relative difference in fluctuation (blue symbols) and
estimated decoherence (orange symbols) averaged over a period
from 40 to 100 ms. Inset: circles show the fitted temperatures as a
function of the holding time.
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End Matter

Atom Sample Preparation and Calibration—We
produce a degenerate Fermi gas through evaporative
cooling in an ODT [Fig. 5(b)]. The temperature of the
atom sample is controlled by tuning the final ODT
depth V0. Samples with different spin configurations are
prepared by combining spin pumping and blast.
Pumping beam wavelength is near 399 nm red detuned
400 MHz from 1S0–1P1 transition with σþ polarization.
The spin blast beam is 556 nm, resonance frequency of
narrow line 1S0–3P1 transition with both σþ and σ−
polarization. After preparing a specific spin con-
figuration, we hold atoms in the trap for 400 ms to
reach thermal equilibrium. We use a Raman beam,
which is 1 GHz blue detuned from 1S0–3P1 transition

with mix π and horizontal linear polarization, to flip
atom spin. We switch off ODT and let the atom cloud
expand freely for 20 ms before absorption imaging. To
reduce fringes in the absorption image, we use a short
interframe time between the first and reference image
within 200 μs. We use a resonance 399 nm blast beam
between two frames to blow the atom cloud away from
the image area.
ODT trap geometry is calibrated by measuring dipole

mode frequency as shown in Fig. 5(a). We quench ODT trap
depth to trigger the vertical motion of the atom cloud and
use an optical Stern-Gerlach beam to give atoms momentum
kick in the horizontal direction. A typical value of our
trap frequency is fðω1;ω2;ω3Þg ¼ f84; 46; 143g × 2π Hz.
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Fermi temperature is TF ¼ ℏ
kB

ffiffiffi

3
p

ω1ω2ω3 × 6Nð1Þ
0 . We

extract temperature by fitting the atom cloud profile with
Fermi-Dirac distribution as shown in Fig. 5(c). This method
is accurate for noninteracting samples; it will overestimate
the temperature no more than 1.5% for weakly interacting
samples in our case.
Noise in the absorption image from photon shot or

camera readout noise will affect extraction atom number
variance. To eliminate those effects, except for variance
within the region of interest, we also extract the total
variance for areas far away from the atom cloud as
background, where almost no atom exists. We take the
variance value after subtracting the background for each
sample set. Figure 6(a) shows a typical atom number and its
variance versus distance from the atom cloud center with
two gray areas marked as the region of interest and
background area correspondingly.
Because of the imperfection of the imaging system,

binning size will affect the extracted variance value, as
shown in Fig. 6(b). We bin raw data with specific sizes to

reduce these effects. Meanwhile, the bin size cannot be
too large due to the limited atom cloud size. We find the
variance ratio between degenerate and thermal gases
approaches a constant value as the bin size exceeds
7 pixels. At that binning size, the extracted variance
reflects the actual value of different samples with a
constant factor. For all data presented in this Letter,
we use the 7-pixel bin.
By carefully tuning blast beam power for each spin

state, we can prepare balanced and imbalanced spin
configurations. The preparation result can be examined
by counting atom number after OSG pulse as shown in
Fig. 1(c).
In the experiment, we quench atom spin using a

Raman pulse. We rotate the spin of spin-polarized atoms
to superposition states of N spin. We can change the
superposition states by tuning the power, the power ratio
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FIG. 6. Imaging system calibration and Optical Stern-Gerlach
measurements. (a) The upper panel shows the average atom
number in one binning area, and the x axis is the distance away
from the center of the atom cloud. The lower panel is the total
variance. At the area far from the center, where there are almost
no atoms, total variance is a constant value contributed by photon
shot noise, readout noise, and dark noise. The shaded region on
the left indicates density fluctuation at the center of the atom
cloud; the shaded region on the right acts as a background.
(b) Variance per atom when taking different bin sizes with the
same datasets. When the bin size is large enough, variances tend
to be constant. The inset plot shows the variance ratio between
degenerate Fermi gas and thermal gas. (c) The atom number in
each spin state is examined through optical Stern-Gerlach
measurement. We can prepare arbitrary spin configurations by
tuning the spin pumping and blast beam power. The left part
shows an imbalanced two-spin Fermi gas with a tunable atom
number ratio. The right part shows a four-spin Fermi gas with two
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FIG. 5. Experimental sequence. (a) ODT trap frequency cali-
bration fðω1;ω2;ω3Þg ¼ f84; 46; 143g × 2π Hz. (b) The tem-
perature of the atomic sample is controlled by varying final ODT
depth V0. Different spin configurations are prepared using
399 nm pumping and 556 nm blast pulse; atoms are held in
ODT for 400 ms to reach thermal equilibrium before measure-
ment. A Raman pulse is used to flip spin in quench dynamics
measurement. Short interframe time absorption imaging is
applied to measure atom distribution after 20 ms time of flight.
The interframe time is 200 μs, and a 399 nm blast pulse is applied
to clean all atoms between two frames. (c) The atom cloud profile
is fitted with the Fermi-Dirac distribution function to determine
the temperature.
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between π, and linear polarization and pulse time of the
Raman beam. The coefficient of each spin component is
nearly the same (within 10% difference) as shown in
Fig. 7(a). We use a Ramsey spectroscopy to test the
coherence of the atom sample. For a two-spin system,
the first π=2 pulse will flip the spin from j↑i to
ðj↑i þ j↓iÞ= ffiffiffi

2
p

, after a waiting time δt, the second
π=2 will rotate to a δt dependent superposition states
of spin-up and spin-down if there is no decoherence. For
spin N ¼ 6 system, the first π=2 pulse will rotate spin
from jmF ¼ 5=2i to jmF ¼ 5=2i þ jmF ¼ 3=2i usually
with a small fraction of jmF ¼ 1=2i as plotted in Fig. 7.
The second pulse will rotate spin to the superposition of
all six spin states depending on interpulse waiting time
δt. If the system keeps fully coherent for a certain
waiting time, the spin can return to jmF ¼ 5=2i.
However, if there is decoherence, the contrast of spin
oscillation will drop as shown in Fig. 7(b). If the system
becomes fully decoherent, the final states after the second
π=2 pulse will be time-independent. According to our
Ramsey-like spectroscopy up to 100 ms hold time, the
spin population oscillates as expected in a coherent
sample [Fig. 7(b)] with large contrast, which suggests
the system remains almost coherent within 100 ms
[Fig. 7(c)]. A typical Ramsey sequence can be used to
quantitatively determine the decoherent population by
investigating how the envelope of the oscillation decays.
However, it is noted that since the decoherent ratio is
small (typically <10%), such an approach is limited by
the non-negligible noise observed in the longer time.
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FIG. 7. Rabi oscillation during quench dynamics. (a) Rabi
oscillation for quench pulse from spin-polarized Fermi gases to
near equally distributed 2-, 3-, 4-spin Fermi gases. We truncate
Rabi oscillation at a gray square. Higher Raman pulse power is
required for transitions to larger spin-number states. (b) Theo-
retical predictions of atom population after π=2 pulse for a
coherent gas (upper panel) and decoherent gas (lower panel) start
from a SUð2Þ Fermi gas. (c) Spin population measurement after a
Ramsey-like sequence—two π=2 pulses for different interpulse
holding time. Rabi frequency between mF ¼ 3=2 and mF ¼ 5=2
is around 5 kHz.
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