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Probing the hollowing transition of a shell-shaped Bose-Einstein condensate
with collective excitation
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We investigate the hollowing transition of a shell-shaped Bose-Einstein condensate using collective ex-
citations. The shell is created using an immiscible dual-species Bose-Einstein condensate mixture, with its
hollowness controlled by tuning the repulsive interspecies interaction via a Feshbach resonance. Our results
reveal two distinct monopole modes in which the two condensates oscillate either in phase or out of phase.
The spectrum of the out-of-phase mode exhibits a nonmonotonic dependence on the interspecies interaction,
providing a clear signature of the topology change from a filled to a hollow condensate. Furthermore, we find
that the critical point of the hollowing transition depends strongly on the number ratio of the two species. Our
findings provide a detailed understanding of the topology change in shell-shaped quantum gases and pave the
way for future study of quantum many-body phenomena in curved spaces.
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I. INTRODUCTION

The study of double-species Bose-Einstein condensates
(BECs) dates back to 1957 [1], when the superfluid helium
mixture was theoretically studied for the first time. Following
the creation of BECs of dilute atomic gases in 1995, inter-
est in this topic was revived, leading to intense theoretical
and experimental explorations still ongoing to date. Although
earlier studies primarily focused on phase separation, that is,
the miscible-immiscible transition for repulsive intraspecies
and interspecies interactions [2–17], the recent discovery of
the quantum liquid droplet phase in the mean field collapsing
regime [18–22] demonstrates that there remains a wealth of
physics to explore in the dual-species BEC system.

Previous experimental studies of the miscible-immiscible
transition have predominantly been conducted in elongated
traps [10,12,15,23]. In such geometries, the phase separation
largely resembles a smeared-out version of the transition in
free space, with the critical scattering length (ac) only slightly
shifted from the homogeneous case. The shift is small because
the interspecies boundary is located near the trap center where
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the trapping potential averaging effect is negligible. Yet, these
studies often failed to identify a distinct transition point due
to their limited sensitivity and relied primarily on observing
morphological changes of the condensates.

Creating and investigating shell-shaped BECs based on
immiscible dual-species BEC system represents a fundamen-
tally different approach [24–26]. In spherically symmetric
harmonic traps, the miscible-immiscible transition manifests
as a hollowing transition where one species forms a shell
surrounding the other—a topology drastically different from
elongated geometries. This topological change leads to a
dramatic shift in the interspecies boundary compared to
previous studies. Furthermore, the shell location is highly
sensitive to the harmonic confinement, the number of parti-
cles, and the interaction. Consequently, the transition exhibits
much richer physics, displaying strong dependence on par-
ticle numbers and interaction strengths. The shell topology
bestows BECs with distinctive features such as periodic
boundaries, local curvature, and two surfaces, which are ab-
sent in BECs in standard bulk geometries. These features
lead to a variety of unique properties, including the emer-
gence of self-interference during free expansion [24,27,28],
and the formation of vortex and antivortex pairs under fast
rotation [29]. Two decades after the initial proposal, shell
BECs have recently been successfully produced using several
different methods, after overcoming the distortion of shell
potentials caused by gravity [24,30]. The method based on
immiscible double BECs allows the production of shell BECs
without the need for a microgravity environment, making it
more convenient for further exploration. For instance, the
self-interference phenomenon was already studied in the first
experiment based on this method [24].
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In this work, we study the hollowing transition of the
shell BEC using double-species 23Na and 87Rb BECs with
tunable interspecies interactions. We employ the monopole
mode of collective excitation as a sensitive probe of this tran-
sition [25,31,32], controlling the shell hollowness through a
Feshbach resonance between the 23Na and 87Rb atoms. In the
context of the dual-species BEC system, this study also pro-
vides direct access to collective excitation dynamics across the
miscible-immiscible crossover, which has been theoretically
studied previously [6,25], but has not been investigated exper-
imentally. Here, in the out-of-phase monopole mode between
the 23Na and 87Rb BECs with increasing repulsive inter-
species interaction strengths, we observe a clear critical point
as the 23Na BEC transitions to a shell shape with a hollow
center. We also find that this point depends sensitively on the
atom number ratios between the two condensates. For typical
experimental conditions, we find the hollowing transition oc-
curs at an interspecies scattering length a12 of approximately
30a0, drastically different from the immiscible-miscible tran-
sition point of a12 ≈ 60a0 in elongated traps or free space.

II. EXPERIMENT

Our experiment starts with a dual-species BEC of 23Na
and 87Rb atoms cotrapped in an optical dipole trap formed by
crossing three orthogonally propagating 946-nm laser beams.
To simplify the collective excitation spectrum, we create a
nearly spherical harmonic potential by carefully adjusting the
power ratios between the three laser beams. The measured
oscillation frequencies of the trap along different axes are con-
sistent with each other to within 5%. At the 946-nm “magic”
wavelength [24,33], the two species experience the same trap
oscillation frequency ω0 and thus the same gravitational sag
−g/ω2

0 in the vertical direction. This ensures the centers of
mass of the two condensates nearly overlap.

We prepare both 23Na and 87Rb atoms in their low-
est hyperfine Zeeman level |F = 1, mF = 1〉. Away from
Feshbach resonances, the interaction constants satisfy g12 �√

g11g22, rendering the two condensates immiscible. Here,
gi j = 2π h̄2ai j/μi j where ai j are the s-wave scattering lengths,
μi j = mimj/(mi + mj ) are the reduced masses, and mi are the
atomic masses, respectively (with i, j = 1 for 23Na and 2 for
87Rb). Under these conditions, the 23Na BEC will form a shell
surrounding the 87Rb BEC [24].

To control the hollowness of the 23Na BEC, we use a
magnetic Feshbach resonance at B0 = 347.65 G to tune a12

following a12 = abg[1 + �/(B − B0)]. Here abg = 76.3a0 is
the background 23Na - 87Rb scattering length near B0, and
� = 4.26 G is the width of the resonance [34]. By adjusting
the magnetic field B from 351.91 to 370 G, we can modify a12

from 0a0 to 60a0 while keeping a11 = 60.5a0 [35] and a22 =
100.14a0 [36] constant. As shown in Fig. 1(a), numerical sim-
ulations using the coupled Gross-Pitaevskii equations (GPEs)
suggest that within the range of a12, intermediate states be-
tween a bulk and a shell sample of 23Na BEC can be achieved.

III. IN-PHASE AND OUT-OF-PHASE MONOPOLE MODES

Analogous to classical coupled oscillators, the collec-
tive excitation of dual-species BECs also includes in-phase
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FIG. 1. Creating and probing a shell BEC in a 23Na - 87Rb
double-species BEC system. (a) From bottom to top: calculated
density distributions of the two condensates with increasing inter-
species scattering length a12 illustrate the miscible-immiscible phase
transition and the hollowing transition of the 23Na shell. (b) Dur-
ing absorption imaging, a hollow shell appears as a double-peaked
feature. The bottom subfigures depict the central intersections of
the original shell (left) and its projection along the probing beam
direction (right). The size of the shell can be extracted from the
projected distribution using our fitting protocol.

and out-of-phase modes. In general, the two modes are
coupled [6,25], and probing them independently in experi-
ments presents significant challenges. However, this issue can
be mitigated by using the magic-wavelength spherical trap.
Figures 2(a) and 2(b) show the numerically calculated spectra
as a function of the interspecies scattering length for several
of the lowest monopole modes using Bogoliubov–de Gennes
equations (BdGEs), with the trapping light frequency set at the
magic condition and slightly deviated from it, respectively. In
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FIG. 2. Simplifying the double BECs excitation spectrum with
magic-wavelength spherical potential. All plots are calculated using
N1 = N2 = 106. (a) and (b) show the lowest four modes in magic-
wavelength and non-magic-wavelength spherical traps, respectively.
For the former, the trap oscillation frequencies are 2π × 118.6 Hz
for both species, while for the latter, it is 2π × 98.6 Hz for 87Rb.
While in (a) the lowest in-phase (blue dashed curve) and out-of-phase
modes (black solid curve) have no coupling, the same modes in
(b) are coupled together as evidenced by the avoided crossing and
the gap at the position marked by the vertical dashed line.
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the magic-wavelength case, the two modes are fully decoupled
and exhibit a real crossing, thus allowing them to be probed
with minimal ambiguity. Conversely, in the latter case, the
coupling leads to an avoided crossing with an energy gap,
resulting in a switch between the in-phase and out-of-phase
modes.

Intuitively, these very different behaviors can be under-
stood as follows: when the trap frequencies for the two
species differ, the excitation of the two species at small a12

exhibits a predominantly “single-species nature,” where one
species is generally more significantly excited than the other.
Such excitation is inherently a superposition of in-phase and
out-of-phase characteristics, making it difficult to distinguish
between the two modes. As a12 increases and the interspecies
coupling becomes stronger, the modes transition to a “two-
species nature,” where both species are substantially involved.
This transition is characterized by a redistribution of the in-
phase and out-of-phase contributions, resulting in coupled
modes with mixed characteristics. In a magic-wavelength
spherical trap with equal trap frequencies, the bare single-
species excitation is degenerate even for a12 = 0. Importantly,
the interspecies interaction resolves this degeneracy by form-
ing collective eigenmodes that are purely in phase and purely
out of phase. So, the two-species natures are originated from
a12 and hence will not be altered by increasing a12. As a result,
the two modes are decoupled for all a12 in this special trap.

We note that the coupling appears even for small nonzero
trap frequency difference �ω and the gap moves to dif-
ferent a12 when �ω is tuned. We define and calculate a
quantity called the two-species collectivity, which equals 1
when both species contribute equally to the excitation and
approaches zero when one species dominates. For �ω = 0
in the magic-wavelength trap, the collectivity remains high
even for small a12. However, it rapidly decreases for nonzero
�ω, indicating that the excitation loses its two-species na-
ture (see Appendix B 1). Thus, to clearly distinguish the in-
and out-of-phase modes, especially at small a12, the magic-
wavelength spherical trap is essential. In addition, a spherical
potential supports monopole modes without damping [37] and
is generally easier to handle with analytical and computa-
tional methods. These advantages make the magic-wavelength
spherical trap an ideal choice for detailed comparisons be-
tween our measurements and theoretical models.

We use two very different modulation methods to excite
these two modes. In the first experiment, we excite and study
the in-phase monopole mode by modulating the trapping
potential. We first prepare the dual-species BEC at a target
interspecies scattering length a12 by tuning the magnetic field.
Subsequently, we modulate the power of the three trapping
beams with the same phase and amplitude, which induces syn-
chronized compression and expansion of the two condensates.
The trap modulation amplitude and duration need to be set
carefully to maximize the amplitude of the monopole oscilla-
tion while avoiding the excitation of other collective modes.
Empirically, we determine that a modulation amplitude of 4%
and a duration of approximately 15 modulation periods can
induce large enough monopole oscillation amplitude without
significantly coupling to other modes.

To excite the out-of-phase mode, we instead vary a12 by
applying a sinusoidal modulation to the magnetic field while
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FIG. 3. (a) In-phase size oscillation for 87Rb and 23Na at a12 =
30a0. For 87Rb, data points represent the averaged horizontal and
vertical sizes extracted from two-dimensional Gaussian fittings of the
images, while for 23Na, rc obtained from the shell fitting procedure
are used. (b) The out-of-phase size oscillation at a12 = 30a0. (c) Fre-
quency spectrum for the lowest in-phase and out-of-phase modes.
The blue and black solid lines are the calculations from BdGEs for
the lowest in-phase and out-of-phase monopole modes, respectively.
For this set of measurements, the 23Na atom number is 1.0(2) × 105

and the 87Rb atom number is 7.0(5) × 104. All oscillation frequen-
cies ω are normalized to the trap frequency ω0. The error bars of ω

are from the sinusoidal fitting.

keeping the trapping potential constant. This modulation
induces antiphased changes to the sizes of the two conden-
sates. For instance, when a12 is increased, the 23Na cloud is
forced outward, causing it to expand, while the 87Rb cloud is
compressed inward, resulting in a size decrease. The dynamic
interplay between the two condensates under this modulation
scheme leads to the out-of-phase monopole oscillations of our
interest.

Similar to that for the in-phase mode, we empirically
choose the amplitude and duration of the a12 modulation to
obtain the maximum possible signal without significant ex-
citation of other collective modes. For small a12, we use a
moderate modulation amplitude of 2a0 which is enough to
cause significant sample size variations. However, when a12

becomes large enough to cause phase separation, we increase
the modulation amplitude to 5a0 to compensate for the re-
duced overlap and effectively excite the desired oscillation.

After modulation, we allow the two condensates to evolve
in the trap for varying durations. Finally, we release them from
the trap and image the resulting clouds using a two-species
high-magnetic-field absorption imaging method after 15 ms
of free expansion [38]. As illustrated in Fig. 1(b), to obtain the
size of the 23Na shell, we model it with a three-dimensional
spherical Gaussian shell function n1 × exp[−(r − rc)2/σ 2].
We fit the absorption images using the Abel transformation
of this Gaussian shell function to extract the shell center rc,
shell thickness σ , and peak density n1. We use rc to represent
the size of the 23Na shell. For the 87Rb BEC size and 23Na
bulk sample when a12 is small, we use the average of the hori-
zontal and vertical rms widths obtained from two-dimensional
Gaussian fits.
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Figures 3(a) and 3(b) are exemplary resulting monopole
oscillations of two miscible condensates with a12 = 30a0

excited by modulating the trapping potential and the inter-
species interaction strength, respectively. For the former case,
the measured phase slip between the 23Na and 87Rb size
oscillations is less than 0.1π , which is consistent with in-
phase oscillation; for the latter in Fig. 3(b), this is about 1.1π ,
i.e., the two condensates oscillate out of phase with each other.
As expected for a spherical potential [37], the damping is
minimal during the observation period. The slight phase slip
and damping are attributed to residual mixing between the two
modes, most possibly due to the imperfect spherical symmetry
and unavoidable anharmonicity of the optical potential.

IV. THE HOLLOWING TRANSITION

To investigate the hollowing transition, we examine the
monopole modes for a12 from 0 to around 60a0. As will be
discussed later, the oscillation frequency ω of the out-of-phase
mode also depends on the atom numbers. The atom num-
ber fluctuations in our system are large enough to generate
observable effects. To mitigate this problem, we used only
postselected data points with atom number fluctuations within
20% for this measurement.

The blue points in Fig. 3(c) show the measured oscillation
frequency ω of the in-phase mode, which barely changes with
a12. This is reminiscent of the in-phase normal mode of two
classical coupled oscillators with the same natural frequen-
cies, where the coupled oscillation frequency is the same as
that of the individual uncoupled oscillators and is not affected
by the coupling. Here, the measured ω is

√
5ω0, exactly the

same as that of the monopole mode for individual BECs in
the Thomas-Fermi (TF) regime [39]. This agrees with our
theoretical derivation (see Appendix B 2) which shows that
the two-species BEC can be effectively treated as a single
one in this mode. Obviously, this mode is not sensitive to the
hollowing transition.

The behavior of the out-of-phase mode is drastically dif-
ferent, as shown by the black points in Fig. 3(c). For two
noninteracting condensates at a12 = 0a0, the oscillation fre-
quency ω is also

√
5ω0, the same as that of the in-phase

mode. As a12 increases, ω first decreases to a minimum of
approximately 2ω0 at 30a0. Afterwards, it starts to increase
and eventually levels off for a12 � 60a0 when the Na shell
is fully formed. This nonmonotonic dependence on a12 thus
makes this mode a sensitive probe of the hollowing transition.

While this behavior agrees fully with our numerical so-
lution based on BdGEs [black solid curve in Fig. 3(c)], an
intuitive understanding can be gained from the fact that the
out-of-phase mode involves density oscillations transverse to
the condensate boundaries, where the relative motion between
the two species makes ω sensitive to the overlap, and thus
a12 [31]. In addition, this mode predominantly excites the
23Na shell, while the bulk 87Rb BEC is driven to respond
with an opposite-sign motion to minimize the interaction en-
ergy. This is evident from the π -phase difference between the
two species and the larger oscillation amplitude of 23Na, as
shown in Fig. 3(b). This suggests that we can gain insight by
studying the thin-shell limit with N1 � N2 [27], where 23Na

dominates the mode dynamics and 87Rb excitation, being the
response, becomes less important. Here N1 and N2 are the
numbers of 23Na and 87Rb atoms, respectively. This allows an
analysis with the simplified BdGEs, which can quantitatively
reproduce the frequency spectrum of the full BdGEs (see
Appendix B 3).

Under such a limit, the 87Rb BEC merely acts as a
background, contributing to an effective potential Veff(r) =
1
2 m1ω

2
0r2 + g12n2(r) for 23Na. Here n2(r) is the ground-state

density distribution of 87Rb. For the small a12 region before
the shell starts to form, since the two condensates are miscible,
under the TF approximation,

Veff(r) = 1
2 m1ω̃

2
0r2 + C, (1)

where

ω̃0 = ω0

(
1 − g12m2

2g22m1

)
(2)

is a weakened trap frequency and C is a constant shift. The
simplified two-species BdGEs reduce the system to the single-
species case with a collective oscillation frequency ω = √

5ω̃0

(see Appendix B 3). For cases with more balanced num-
bers N1 ∼ N2, we can use a hydrodynamic analysis instead
(see Appendix B 2), which gives ω = √

5ω0(1 − g12m1

g11m2
). For

both scenarios, the reduction of ω with increasing a12 be-
fore the hollowing transition is well accounted for by these
analyses.

The posthollowing increase in ω can also be understood
with the effective potential Veff(r). At large a12, when the inner
surface of the shell is formed, the shell experiences a skewed
“V”-shape Veff(r), with its minimum at the equilibrium po-
sition rc. Approximating Veff(r) as harmonic, its steepness
qualitatively determines ω of the shell BEC. As a12 increases,
the potential becomes steeper and ω increases. However, at
very large a12, Veff(r) transforms into a hard wall potential
plus a linear term. Further strengthening of the wall no longer
affects the dynamics, leading to the observed plateau in the
frequency spectrum.

From a physical standpoint, at small a12, the 23Na BEC
oscillates like an accordion [27], with only its width chang-
ing. In this regime, density modulations are localized in the
center, where both condensates experience a weakened trap.
This leads to reduced densities and lower stiffness, resulting
in lower ω that does not depend on N1. As a12 increases,
the 87Rb condensate becomes a rigid core for the 23Na shell,
creating an inner boundary. This boundary restricts the motion
of the width and therefore restores the stiffness. Furthermore,
it liberates and shifts the dominant motion degree of freedom
to rc, where the 23Na BEC oscillates like a balloon [27]
with higher ω. Thus, the emergence of the inner boundary
changes the trend, creating a minimum in the out-of-phase
mode frequency spectrum. This minimum is a hallmark of the
transition point.

V. THE EFFECT OF ATOM NUMBERS

Next, we investigate the dependence of the hollowing tran-
sition on the number of atoms. To this end, we measure the
out-of-phase oscillation frequency ω as a function of a12,
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FIG. 4. The effect of number ratio on the hollowing transition
point. (a) The numerically calculated ac (in units of a0) for the
hollowing transition with different combinations of 23Na and 87Rb
atom numbers. (b) Experimentally measured ac for several number
ratios N2/N1 between 87Rb and 23Na. The 23Na number is fixed at
approximately 1 × 105, thus the theoretical curve corresponds to the
black vertical dashed line in (a). The error bars of N2/N1 are from
statistics of number fluctuations, while those of the ac are from the
fitting.

similar to that shown in Fig. 3(c), for various ratios of 87Rb to
23Na atom numbers N2/N1. Figure 4(a) shows the calculated
general behavior of the critical interspecies scattering length
ac for all combinations of atom numbers ranging from 103 to
106, illustrating that the hollowing transition point is highly
sensitive to the atom number ratios. In the experiment, we fix
N1 at approximately 105 and vary N2 from 2 × 104 to 105

for each set of measurements. This allows us to probe the
out-of-phase monopole mode for N2/N1 ranging from 0.2 to
1. We then empirically fit each spectrum with a bi-Gaussian
function, sharing the same center positions but having dif-
ferent widths, to extract the ac at the minimum of ω, which
corresponds to the onset of the hollowing transition.

The measured ac as a function of number ratio N2/N1 is
summarized in Fig. 4(b). The observed decrease in the ac with
increasing N2/N1 indicates that the 23Na BEC forms a shell
structure at progressively smaller a12 values as the 87Rb num-
ber increases. This behavior is attributed to the contribution
of the 87Rb BEC to Veff(r). As the repulsion experienced by
23Na from 87Rb is g12n2 ∼ g12N2/5

2 , increasing N2 hardens the
87Rb core and lowers the interaction strength needed for 23Na
to become hollow.

However, it is worth noting that when the number of atoms
in either species becomes very low, the quantum pressure term
starts to play a significant role in the hollowing transition. This
explains why the ac saturates in the upper-left and lower-right
regions of Fig. 4(a). The larger deviation of the data point
at N2/N1 = 0.2 from the theoretical curve can be attributed
to the less pronounced frequency minimum, which reduces
the reliability of the fitting procedure used to extract it (see
Appendix A 3).

VI. CONCLUSION

In this work, we demonstrate a powerful approach to probe
the quantum topology change in shell-shaped BECs through
collective excitations. Through precise control of the shell-
BEC hollowing transition and comprehensive measurements
of its collective modes, we establish definitive experimental

evidence of the topological changes between filled and hollow
condensates. Our measurements unambiguously identify two
distinct monopole modes with dramatically different behav-
iors: a robust in-phase mode with constant frequency, and a
highly sensitive out-of-phase mode that exhibits pronounced
nonmonotonic frequency response marking the topological
transition point. Exploiting this hallmark of the transition,
we reveal the critical dependence of the hollowing transi-
tion on the number ratio of the two species, showcasing a
key mechanism that governs shell formation. Our results es-
tablish collective excitations as a precise and effective tool
for investigating quantum topology transitions in ultracold
gases. The significant deviation of the hollowing transition
point from conventional miscible-immiscible transitions in
elongated traps conclusively demonstrates the uniquely rich
physics emerging from the exotic shell topology, opening
new avenues for exploring quantum many-body phenomena
in curved spaces.
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APPENDIX A: EXPERIMENTAL METHODS
AND DATA ANALYSIS

1. The spherical magic-wavelength trap

The procedure for preparing the shell BEC sample is sim-
ilar to our previous work [15,24]. Initially, we evaporate the
double BECs in a crossed 1070-nm optical dipole trap and
subsequently load them into a 946-nm optical dipole trap
at low magnetic field. We then ramp up the magnetic field
to reach the desired value. To realize a spherical potential,
we then introduce an additional 946-nm laser beam in the
vertical direction [Fig. 5(a)]. By fine tuning the power of this
vertical beam, we finally obtain equal trap frequencies along
all directions.

The trap frequency of the spherical trap is determined by
observing the sloshing motion of the BEC sample from two
different directions [37,40]. We begin by applying a small
magnetic gradient pulse for a short duration to displace the
sample from its equilibrium position and then turn off the
gradient. After a variable evolution time, we release the BEC
from the trap and image it after 15 ms of time of flight.
The axes of the trapping potential are defined in a rotated
frame (x′, y′, z′) relative to the reference frame (x, y, z) set by
the imaging axis. In the frame of the trapping potential, the
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FIG. 5. (a) Creating a magic-wavelength spherical optical po-
tential by crossing three laser beams. The asphericity is fined
tuned by adjusting the relatively powers of the beams. (b) Char-
acterizing the spherical trap via sloshing motions simultaneously
in all three directions. For this set of data, the trap frequen-
cies obtained from the global fitting are (ωx′ , ωy′ , ωz′ ) = 2π ×
[122.3(3), 128.6(7), 124.8(1)] Hz (see text for details).

position of the atomic cloud is given by

r′ =

⎡
⎢⎣Ax′ sin (ωx′t + φx′ )

Ay′ sin(ωy′t + φy′ )
Az′ sin (ωz′t + φz′ )

⎤
⎥⎦ (A1)

where Ai′ , ωi′ , and φi′ (i′ = x′, y′, z′) are the amplitude, angular
frequency, and phase of the oscillation along the eigenaxes of
the potential. In the imaging axis frame, the position of the
atomic cloud is given by

r = Rz(θz )Ry(θy)Rx(θx )r′ (A2)

where Ri(θi ) is the rotation matrix which rotates the coordi-
nate system around axis i′.

We perform a global fit of Eq. (A2) to the atomic cloud po-
sition obtained from both horizontal and vertical imaging. An
example of the observed oscillation is shown in Fig. 5(b). The
geometric mean of the trap frequencies ω0 = (ωx′ωy′ωz′ )1/3 is
used for data analysis.

Since the spherical potential is critical for decoupling the
in-phase and out-of-phase modes, and to minimize the effect
of damping, we typically collect data using a spherical poten-
tial with a residual asphericity less than 5%. The asphericity
is defined as (ωmax − ωmin)/ω0, where ωmax and ωmin are
the maximum and minimum of the three trap frequencies,
respectively.

2. Shell fitting

Instead of using the lightsheet imaging method as in our
previous work [24], we adopt a shell fitting method to better
extract information from the shell [41]. An example of the
fitting is shown in Fig. 6.

3. Transition point

To extract the critical interspecies scattering length ac for
the hollowing transition, we fit the data empirically using a bi-
Gaussian function with the same center position but different

0.0

0.1
0.2
0.3

O 
D

FIG. 6. Example of the fitting results. The bottom panel shows
the fitting results for the data points indicated by the black line in the
upper image.

widths:

f (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A exp

(
− (a12 − ac)2

2σ 2
L

)
+ B, a12 < ac,

A exp

(
− (a12 − ac)2

2σ 2
R

)
+ B, a12 � ac.

(A3)

Here, A is the amplitude, B is the offset, and σL and σR are the
widths on the left and right sides of ac, respectively.

An example is shown in Fig. 7, where for N2/N1 = 0.4
the critical interspecies scattering length of the hollowing
transition is determined to be ac = 32(2)a0 from the fitting.

The uncertainty of the critical interspecies scattering
length, a12, is derived from the fitting error. This fitting proce-
dure employs a weighted least-squares approach, where each
measured frequency data point contributes to the fit according
to a weight inversely proportional to its variance.

20 30 40 50
2

2.2

2.4

2.6

O
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fre
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cy
 (

0)

a12 (a0)

FIG. 7. Bi-Gaussian fit of the out-of-phase mode spectrum for
extracting the transition point of the hollowing transition. The black
squares are the measured oscillation frequencies at different a12,
while the curve is from the fitting to the bi-Gaussian in Eq. (A3).
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FIG. 8. Collectivity between species excitations, showing
the average of in-phase and out-of-phase modes. Solid line,
trap frequencies ω1 = ω2 = 2π × 118.6 Hz; dashed, ω1 =
2π × 108.6 Hz, ω2 = 2π × 118.6 Hz; dash-dotted, ω1 = 2π ×
118.6 Hz, ω2 = 2π × 108.6 Hz. Data at a12 = 0a0 are omitted. For
large a12, the collectivity is always high due to the interspecies
interaction.

It is important to note that the fitting routine evaluates only
how well the weighted data points agree with the chosen fit-
ting function, and the reported error on a12 reflects the formal
error of this fit alone. It does not account for the propagation
of uncertainties from the original data points.

Specifically, for the case of N2/N1 = 0.2, the frequency dip
at the hollowing transition is relatively shallow. Under such
circumstances, minor fluctuations in the measured frequen-
cies near the transition region can notably affect the fitting
results. Given that the fitting algorithm optimizes overall data
agreement rather than explicitly emphasizing sensitivity near
critical transitions—and considering the limited number of
available data points—these fluctuations may introduce biases
into the determined a12 values that are not fully captured
by the reported uncertainty. This scenario explains why the
uncertainty appears smaller than expected in the point of
N2/N1 = 0.2 in Fig. 4.

APPENDIX B: THEORETICAL ANALYSIS

1. Collectivity

We define collectivity between two species as

Collectivity = 1 − tanh

(
2 × |�N1 − �N2|

�N1 + �N2

)
, (B1)

where �Ni = ∫ |δni(r)|d3r is the number of particles in-
volved in the excitation with density modulation δni(r). The
factor 2 serves as a scale where the case �Ni = 3�Nj de-
fines large particle imbalances, and the hyperbolic tangent
enhances the sensitivity to imbalances.

With this definition, the collectivity is 1 when both species
contribute equally to the excitation and approaches zero when
one species dominates. As shown in Fig. 8, this is particu-
larly relevant for small a12 when the interaction is weak. At
matched trapping frequencies, the collectivity remains high
even in this regime. However, when the trap frequencies are
different for the two species, the collectivity rapidly decreases,

FIG. 9. Comparison of the lowest out-of-phase monopole mode
spectrum with full BdGEs (solid curves) and the simplified BdGEs
(dashed curves) for several different atom numbers. (a) N1 = 103 and
N2 = 105. (b) N1 = 104 and N2 = 105. (c) N1 = 105 and N2 = 105.
(d) N1 = 105 and N2 = 7 × 104.

indicating that the excitations lose their two-species nature. In
this sense, the magic-wavelength spherical trap is necessary
in order to probe the hollowing transition. For larger a12,
collectivity is always high as interaction already couples two
species.

2. Hydrodynamics equation method for balanced N1 ∼ N2

a. Single-species hydrodynamics equations

From the TF approximation, the ground-state density dis-
tribution for the single-species case in an isotropic harmonic
trap is [42]

ni(r) = 1

2

mi

gii
ω2

0

(
R2

i − r2
)
. (B2)

Ri is determined from the conservation of the number of parti-
cles. To consider the collective excitation, a perturbative term
is added such that the general density distribution is written
as ni(r, t ) �→ ni(r) + δni(r)e−iωt ; this leads to an eigenvalue
problem [42]:

−miω
2δni(r) = ∇ · [giini(r)∇δni(r)]. (B3)

We are interested in the breathing mode with ω = √
5ω0

and [42]

δni(r) = Ci

(
1 − 5

3

r2

R2
i

)
, (B4)

where Ci is an undetermined constant.

b. Two-species hydrodynamics equations

In the two species case, the ground-state density profile can
be obtained from the TF approximation as(

g11 g12

g12 g22

)(
n1

n2

)
=

(
μ1

μ2

)
+ 1

2
ω2

0r2

(
m1

m2

)
, (B5)
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where ni is obtained by inverting the interaction matrix on
the left. To describe the excitation, the hydrodynamics equa-
tions that describe the BECs in terms of the densities and the
velocity field vi(r, t ) are

mi
∂vi

∂t
= −∇

(
1

2
mi

(
v2

i + ω2
0r2

) + giini + g12n j

)
,

∂ni

∂t
+ ∇ · (nivi ) = 0. (B6)

To analyze the excitations, we follow the single-species case
and substitute ni(r, t ) �→ ni(r) + δni(r, t ) and vi(r, t ) �→ 0 +
δvi(r, t ) into Eq. (B6). Up to first order in δni and δvi, the
two equations in Eq. (B6) are combined into a single one, and
substituting δni(r, t ) = δni(r)eiωt yields

−miω
2δni = ∇ · [ni∇(giiδni + g12δn j )], (B7)

where the time-dependent phase is canceled out and this equa-
tion determines the frequency spectrum.

c. Perturbative analysis

This section obtains a perturbative description for the
breathing mode when g12 ≈ 0 and 23Na encloses 87Rb (R1 �
R2). We focus on 87Rb because only the overlapping region
needed to be considered.

We analyze Eq. (B7) by keeping up to first order in g12,
with quantities being expanded as

ni(r) = n(0)
i (r) + g12�ni(r),

μi = μ
(0)
i + g12�μi,

δn1(r, t ) = s
[
δn(0)

1 (r) + g12h1(r)
]
e−i(

√
5ω0+g12ω

′ )t ,

δn2(r, t ) = [
δn(0)

2 (r) + g12h2(r)
]
e−i(

√
5ω0+g12ω

′ )t , (B8)

where the superscript “0” is to denote the case when g12 = 0,
say, n(0)

i is the ground-state distribution in the absence of in-
terspecies interaction. The first-order correction in frequency
is g12ω

′, and s = +1 for the in-phase mode and s = −1 for
the out-of-phase mode. To find ω′ and hi(r), we obtain the
�ni(r) through Eq. (B5) and substitute directly the expansion
in Eq. (B8) into Eq. (B7), leading to a complicated equation.
We can simplify the equation by rewriting n(0)

1 ∇δn(0)
2 and

n(0)
2 ∇δn(0)

1 with the explicit expressions in Eqs. (B2) and (B4),
and further postulating that the constants Ci in Eq. (B4) are
related by

C1

C2
=

1
2

m1
g11

ω2
0R2

1

1
2

m2
g22

ω2
0R2

2

= g22m1R2
1

g11m2R2
2

. (B9)

This means that the peak excitation amplitude is proportional
to the peak density of the ground-state distribution. Eventu-
ally, we cancel some terms using Eq. (B3), and obtain the
eigenvalue equations

−
√

5ω0m2δn(0)
2

(
2ω′ + (1 − s)

m1

g11m2

√
5ω0

)
= B + 5m2ω

2
0h2 + ∇ · [

g22n(0)
2 ∇h2

] = 5m2ω
2
0h̃2 + ∇ · [g22n(0)

2 ∇h̃2
]
, (B10)

where B is a constant and h̃2 ≡ h2 + B/(5ω2
0m2). There is a

simple solution to this equation when h̃2 has the same form
as Eq. (B4), such that ∇ · [g22n(0)

2 ∇h̃2] = −5m2ω
2
0h̃2 and the

term in parentheses in Eq. (B10) is equal to zero, giving
rise to

ω′ =
{

0, in phase

−√
5ω0

m1
g11m2

, out of phase.
(B11)

The in-phase mode frequency is again a constant
√

5ω0. The
out-of-phase excitation frequency is

ω =
√

5ω0 + g12ω
′ =

√
5ω0

(
1 − g12m1

g11m2

)
. (B12)

Such a solution of h2 means that the interspecies interaction
solely modulates the amplitude δn(0)

2 and introduces a constant
shift, hinting that 23Na acts as a background for 87Rb. To
obtain h1, one can flip the indices in Eq. (B10) and substitute
the determined ω′, then solve the resultant equation. For the

in-phase mode, h1 has a similar form as Eq. (B4) up to a
constant. Hence both species retain the single-species nature.
For the out-of-phase mode, h1does not have analytical form
and is beyond our interest.

3. Simplified BdGEs in the thin-shell limit for N1 � N2

We focus on the case where 87Rb encloses 23Na (R2 > R1).
For weak g12, inverting the interaction matrix in Eq. (B5)
and expanding g12 to first order yields the 23Na’s density
distribution:

n1(r) = 1

2

m1

g11
ω̃2

0

(
R̃2

1 − r2
)
, (B13)

where ω̃0 = ω0[1 − g12m2/(2g22m1)] is the effective trapping
frequency and R̃1 > R1 is the TF radius under small g12. The
explicit form of R̃1 can be found from the conservation of the
number of particles, but it is not needed here. The single-
species BdGEs when g12 = 0 and under TF approximation
are [42]

(
− h̄2

2m1
∇2 + 1

2
m1ω

2
0

(
R2

1 − r2
))

u(r) +
(

1

2
m1ω

2
0

(
R2

1 − r2
))

v(r) = h̄ωu(r),

(
− h̄2

2m1
∇2 + 1

2
m1ω

2
0

(
R2

1 − r2
))

v(r) +
(

1

2
m1ω

2
0

(
R2

1 − r2
))

u(r) = −h̄ωv(r), (B14)
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where u(r) and v(r) relate to the wave function as ψ (r, t ) = [ψ (0)(r) + u(r)e−iωt + v∗(r)eiωt ]e−iμt . ψ (0)(r) is the ground-state
wave function. Note that μ1 − 1

2 m1ω
2
0r2 = g11n(0)

1 .
The two-species simplified BdGEs are obtained by neglecting the excitations of 87Rb. Denoting ψ1(r, t ) = [ψ (0)

1 (r) +
u(r)e−iωt + v∗(r)eiωt ]e−iμ1t , the simplified BdGEs are(

− h̄2

2m1
∇2 + 1

2
m1ω

2
0r2 − μ1 + 2g11n1 + g12n2

)
u(r) + g11n1v(r) = h̄ωu(r),

(
− h̄2

2m1
∇2 + 1

2
m1ω

2
0r2 − μ1 + 2g11n1 + g12n2

)
v(r) + g11n1u(r) = −h̄ωv(r). (B15)

In Fig. 9, we show the predicted out-of-phase spectra from numerically solving the full BdGEs and Eq. (B15) for different N1

and N2 as a comparison. We see that the simplified BdGEs provide excellent descriptions for small N1. In TF approximation,
since μ1 = 1

2 m1ω
2
0r2 + g11n1 + g12n2 in Eq. (B5), we find the terms inside the brackets in Eq. (B15) can be simplified as

1
2 m1ω

2
0r2 − μ1 + 2g11n1 + g12n2 = g11n1 = 1

2 m1ω̃
2
0

(
R̃2

1 − r2
)
. (B16)

Therefore Eq. (B15) reduces to the form of Eq. (B14) with effective trap frequency ω̃0. If 23Na is enclosed by 87Rb (R2 > R1),
the TF analysis for Eq. (B15) is valid for the whole distribution, where we obtain

ω =
√

5ω̃0 =
√

5ω0

(
1 − g12m2

2g22m1

)
. (B17)

On the other hand, if 23Na encloses 87Rb (R1 > R2), we have to consider the 23Na density in the nonoverlapping region.
Equation (B16) is still true, but we have to consider the 87Rb’s excitation with effective frequency ω0(1 − g12m1

2g11m2
) higher than

23Na’s and the nonoverlapping region with the original frequencies ω0. Hence Eq. (B17) serves as a lower bound. Regardless of
the cases, ω is lower than the single-species value

√
5ω0.

4. Variational method

a. Before hollowing transition

The Lagrangian for double-species BECs is [42]

L =
∫ {∑

i

[
ih̄
2

(
ψ∗

i

∂ψi

∂t
− ψi

∂ψ∗
i

∂t

)
− h̄2

2mi
|∇ψi|2 − Vi|ψi|2 − gii

2
|ψi|4

]
− g12|ψ1|2|ψ2|2

}
d3r. (B18)

By assuming different forms of Ansätze, we describe the dual-species BECs in different regimes. For weak g12, the oscillations
of two species resemble that in the single-species case where the width of the condensate is oscillating [42], hence the Ansätze
are set to be

ψ1(r, t ) =
√

N1

σ1(t )3/2
f1

(
r

σ1(t )

)
eiβ1(t )m1r2/(2h̄),

ψ2(r, t ) =
√

N2

σ2(t )3/2
f2

(
r

σ2(t )

)
eiβ2(t )m2r2/(2h̄), (B19)

where σ1(t ), σ2(t ), β1(t ), and β2(t ) are the variational parameters, and the functions f1(x) and f2(x) do not need to be known
explicitly. r is the radial distance from the harmonic trap center. The length σi(t ) is the width of the distribution, and it is equal to a
stationary value σ

(0)
i in the ground state. The ground-state density profile defines σ

(0)
i once the function fi(x) is chosen explicitly.

Equivalently, Eq. (B19) represents the ground-state distribution when σi(t ) = σ
(0)
i [and βi(t ) = 0]. During the excitation, σi(t )

oscillates periodically around the equilibrium value with a small amplitude deviation σ̃i(t ) ≡ σi(t ) − σ
(0)
i . The form of the phase

βi(t )mir2/(2h̄) represents a velocity field βi(t )rr̂, where r̂ is the radial unit vector. This choice of the phase characterizes the
species’s motion to be its width σi(t ). In the following, σi and σi(t ) are used synonymously, and similarly for other parameters.
Putting the Ansätze into the Lagrangian Eq. (B18), we obtain

L = −[
1
2 m1N1σ

2
1 ctr,1

(
β̇1 + β2

1

) − U1(σ1)
] − [

1
2 m2N2σ

2
2 ctr,2

(
β̇2 + β2

2

) + U2(σ2)
] − U12, (B20)
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where

Ui(σi ) = cZP,i

σ 2
i

+ 1

2
miNiω

2
0σ

2
i ctr,i + cint,i

σ 3
i

⇒ Ezp,i + Etr,i + Eint,i,

U12(σ1, σ2) = g12
N1N2

σ 3
1 σ 3

2

∫
f 2
1

(
r

σ1

)
f 2
2

(
r

σ2

)
d3r ⇒ Eint,12. (B21)

The “⇒” denotes what the expression reduces to when σi takes the equilibrium value in the ground state. Ezp,i =∫
h̄2/(2mi )∇2nid3r, Etr,i = ∫

(1/2)miω
2
0r2nid3r, Eint,i = gii

∫
n2

i d3r, and Eint,12 = g12
∫

n1n2d3r are respectively the zero-point
(kinetic), potential, and interaction energies for species i, and the interspecies interaction energy. ni = ni(r) = |ψi(r)|2. The "c"
terms like cZP1 are constants and need not be determined explicitly. From the Euler-Lagrange equation, we find βi = σ̇i

σi
, and that

for σi yields

miNictriσ̈i = − ∂

∂σi
(Ui + U12)

= − 1

σi

[
−2

cZP,i

σ 2
i

+ miNiω
2
0σ

2
i ctr,i − 3

cint,i

σ 3
i

− g12
N1N2

σ 3
1 σ 3

2

(
3
∫

f 2
1 f 2

2 d3r +
∫

r
∂ f 2

i

∂r
f 2

j d3r

)]
. (B22)

Given the system is in the ground state where σi = σ
(0)
i and σ̈i = 0, it leads to the condition

−2Ezp,i + 2Etr,i − 3Eint,i − 3Eint,12 − g12

∫
r
∂ni

∂r
n jd

3r = 0. (B23)

This condition is numerically verified with the solution from the GPE. Directly adding the above equations for (i, j) = (1, 2)
and (i, j) = (2, 1) and using integration by part produces

−2(Ezp,1 + Ezp,2) + 2(Etr,1 + Etr,2 ) = 3(Eint,1 + Eint,12 + Eint,2), (B24)

which resembles the virial condition for the single-species case. Then, we assume the oscillating amplitude of σi is much smaller
than their respective equilibrium values and expand the force term in Eq. (B22) up to linear order in σ̃i. The equation of motion
is

−miNictri ¨̃σi = σ̃i
∂2

∂σ 2
i

(Ui + U12)

∣∣∣∣
σi=σ

(0)
i

+ σ̃ j
∂2U12

∂σ1∂σ2

∣∣∣∣
σi=σ

(0)
i

. (B25)

We note that we can symbolically rewrite Eq. (B25) as

−
(

α1 0
0 α2

)(
¨̃σ1
¨̃σ2

)
=

(
χ1 δ

δ χ2

)(
σ̃1

σ̃2

)
, (B26)

where αi ≡ miNictr,i. Explicitly, the symbols represent

(
σ

(0)
i

)2
χi ≡ σ 2

i

∂2

∂σ 2
i

(Ui + U12)

∣∣∣∣
equil

= 6Ezp,i + 2Etr,i + 12Eint,i + 12Eint,12 + 8g12

∫
r
∂ni

∂r
n jd

3r + g12

∫
r2 ∂2ni

∂r2
n jd

3r,

σ
(0)
1 σ

(0)
2 δ ≡ σ1σ2

∂2U12

∂σ1∂σ2

∣∣∣∣
equil

= g12

∫
r2 ∂n1

∂r

∂n2

∂r
d3r. (B27)

Since all the coefficients are known and Eq. (B25) just represents the coupled harmonic oscillators, we can obtain the excitation
frequencies in terms of the ground-state density distributions. The eigenfrequencies are

ω2 = χ1

2α1
+ χ2

2α2
± 1

2

√
4

δ2

α1α2
+

(
χ1

α1
− χ2

α2

)2

, (B28)

where we see that the frequencies are unchanged if αi → αi(σ
(0)
i )2 = 2Etr,i, χi → χi(σ

(0)
i )2, and δ → σ

(0)
1 σ

(0)
2 δ. Therefore, we

can use the expression in Eq. (B27) without the explicit determination of σ
(0)
i . The frequencies obtained by Eq. (B28) using the

numerical ground-state distributions from the GPE are consistent with the results from BdGEs for small a12.

b. After hollowing transition

Here, we describe the breathing modes when 23Na has already formed a shell. We employ Ansätze similar to that in
Ref. [27], with the coupling between the width and the radial center motion of the shell species included. Explicitly, the
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×

FIG. 10. a12 = 36a0, which is beyond the hollowing transition points, for all curves. Black line: BdGEs, N1 = 103, N2 = 105. Red dashed
line: Gaussian Ansätze, N1 = 103, N2 = 105. Aqua dashed-dotted: BdGEs, N1 = 105, N2 = 7 × 104. Magenta dotted: Gaussian Ansätze, N1 =
105, N2 = 7 × 104.

Ansätze are

ψ1(r, t ) =
√

N1√
2π3/2σ1

(
2r2

c + σ 2
1

)e− 1
2 ( r−rc

σ1
)2

eiβ0m1r/h̄+iβ1m1(r−rc )2/(2h̄),

ψ2(r, t ) =
√

N2

σ
3/2
2

f2

(
r

σ2

)
eiβ2m2r2/(2h̄), (B29)

where rc(t ), σ1(t ), σ2(t ), β0(t ), β1(t ), and β2(t ) are variational parameters. rc(t ) is a new parameter characterizing the radial
center of the 23Na’s distribution. The comparison with the sodium density distribution from the GPE and this Ansatz is shown in
Fig. 10. The velocity field for 23Na is β0(t )r̂ + β1(t )(r − rc)r̂, such that β0 characterizes the radial center’s motion. Generally,
rc and σ1 have complicated coupling. To simplify the situation we assume 23Na forms a thin shell, meaning that [27]

rc � σ1, (B30)

where σ1/rc is an expansion parameter. Indeed, this expansion causes the result in this section to be only valid after the hollowing
transition. As a technical remark, we approximate Erf(rc/σ1) ≈ 1 and e−(rc/σ1 )2 ≈ 0 due to their rapid convergence, where Erf(x)
is the error function. Furthermore, we assume the lengths to oscillate in very small amplitudes to keep harmonic motions, such
that the ordering is (

σ̃1

σ1
∼ r̃c

rc

)
� σ 2

1

r2
c

,
σ̃1

r̃c
∼ σ1

rc
, (B31)

where σ̃1 is the deviation of σ1 from its equilibrium value. It means that, up to second order in σ1/rc, terms like σ̇1
rc

σ̇1 = ˙̃σ1
rc

˙̃σ1 are
discarded. σ̃1/σ1 ∼ r̃c/rc because σ̃1/σ1 needs to be comparable to r̃c/rc for the strong coupling to occur for a thick shell. In the
thin shell limit (σ1 → 0), the width is frozen so σ̃1 → 0.

The Lagrangian is L = L1 + L2 − U12; up to second order we have

L1 = −m1

[
1

2
β2

0 + σ1

rc
(β0β1 − β1ṙc + β̇0)σ1 + 1

4

(
1 + σ 2

1

r2
c

)
β2

1σ 2
1 + β̇0rc + 1

4
β̇1σ

2
1

]
− U1(rc, σ1),

L2 = −
[

1

2
m2N2σ

2
2 ctr,2

(
β̇2 + β2

2

) + U2(σ2)

]
. (B32)

In practical calculation, for terms involving βi and its derivative, we keep up to fourth order in σ1/rc. Because ṙc/σ̇1 ∼ rc/σ1, a

term like σ 3
1

r3
c

ṙc
σ̇1

is in fact a second-order term. The terms Ui ⇒ Ezp,i + Etr,i + Eint,i and U12 ⇒ Eint,12 in the ground state. Since we
assume an explicit form for ψ1(r, t ), U1 are explicit functions of σ1 and rc, and we can determine their equilibrium values from
the zero-point and potential energies. For the velocity field parameters, we find

β0 =
(

1 − σ 2
1

r2
c

)
ṙc + σ1

rc
σ̇1, β1 =

(
1 − σ 2

1

r2
c

)
σ̇1

σ1
+ σ 2

1

r2
c

ṙc

rc
, (B33)
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FIG. 11. The theoretic prediction for the out-of-phase mode excitation frequency vs a12 for different N1 and N2. Results from the BdGEs,
variational method, simplified variational method [only look at rc(t )], and perturbation are shown. The perturbation lines for (a) and (b) are√

5ω0[1 − g12m2/(2g22m1)], while for (c) and (d) they are
√

5ω0[1 − g12m1/(g11m2)]. (a) N1 = 103 and N2 = 105. At a12 = 0a0, the excitation
frequency is not

√
5ω0 because N1 is not large enough. (b) N1 = 104 and N2 = 105. (c) N1 = 105 and N2 = 105. (d) N1 = 105 and N2 = 7 × 104.

which exhibit the coupling between the width and the radial center motions. The equilibrium conditions are

− N1
h̄2

2m1r2
c

+ 2Etr,1 − N1
5

2
m1ω

2
0σ

2
1 − 2Eint,1 + 3g11N2

1 σ1

16
√

2π3/2r4
c

−
(

2 − σ 2
1

r2
c

)
Eint,12 − g12rc

∫
∂n1

∂r
n2d3r = 0,

− 2Ezp,1 + N1
h̄2

2m1r2
c

+ N1
5

2
m1ω

2
0σ

2
1 − Eint,1 − 3g11N2

1 σ1

16
√

2π3/2r4
c

−
(

1 + σ 2
1

r2
c

)
Eint,12 − g12

∫
(r − rc)

∂n1

∂r
n2d3r = 0, (B34)

where rc, σ1, and σ2 are meant to be their equillibrium values in the above formula. These conditions are numerically verified after
hollowing transition. For the equations of motion, similar to the derivation in the previous section, we apply the Euler-Lagrange
equation for σi and rc, and substitute the expression for the velocity field parameters. Then, assuming σi and rc undergo small
amplitude oscillations, we linearize the equations and turn them into the form of a generalized eigenvalue problem, where the
excitation frequencies are obtained by diagonalization.

As a technical remark, we use the Gaussian Ansatz for n1 instead of the GPE solution in evaluating terms like
∫

n1n2d3r for
self-consistency. As the 23Na shell gets thinner with decreasing N1, the results from the variational method converge to that from
BdGEs. However, the variational method cannot capture the trend for very large a12 because our Ansatz for 23Na in Eq. (B29)
does not capture the skewness of the wave function. The skewness is becoming important as g12 increases, as we can see from the
effective potential Veff(r) = 1

2 m1ω
2
0r2 + g12n2(r). As g12 increases, Veff(r) turns into a hard wall and a harmonic trap potential,

and the actual wave function becomes more skew symmetric. A symmetric Gaussian function either allows a penetration into
the hard wall or shifts the radial center to the wrong location.

In Fig. 11, we show the results from the full and simplified variational methods [only rc(t ) in motion] with the ground-state
distributions obtained from the GPE for different particle numbers of the species. As expected, the results of the variational
method converge to those of the BdGEs as the 23Na shell becomes thinner [from Fig. 11(d) to Fig. 11(a)]. The simplified
one also captures the frequency trend. The convergence of the variational method can be improved by taking into account the
skewness of the 23Na density profile, but the mathematical difficulty increases.
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