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Blurring the boundary between bosons and fermions lies at the heart of a wide range of intriguing quantum
phenomena in multiple disciplines, ranging from condensed matter physics and atomic, molecular, and
optical physics to high-energy physics. One such example is a multicomponent Fermi gas with SUðNÞ
symmetry that is expected to behave like spinless bosons in the large-N limit, where the large number of
internal states weakens constraints from the Pauli exclusion principle. However, bosonization in SUðNÞ
fermions has never been established in high dimensions where exact solutions are absent. Here, we report
direct evidence for bosonization in a SUðNÞ fermionic ytterbium gas with tunable N in three dimensions
(3D). We measure contacts, the central quantity controlling dilute quantum gases, from the momentum
distribution and find that the contact per spin approaches a constant with a 1=N scaling in the low-fugacity
regime consistent with our theoretical prediction. This scaling signifies the vanishing role of the fermionic
statistics in thermodynamics and allows us to verify bosonization through measuring a single physical
quantity. Our work delivers a highly controllable quantum simulator to exchange the bosonic and fermionic
statistics through tuning the internal degrees of freedom in any generic dimensions. It also suggests a new
route toward exploring multicomponent quantum systems and their underlying symmetries with contacts.
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I. INTRODUCTION

Bosons and fermions exhibit intrinsically different
properties because of the distinct underlying statistics.
Strikingly, the boundary between bosons and fermions could
become blurred under a variety of scenarios in condensed
matter and high-energy physics [1–4], ranging from the
supersymmetry exchanging bosons and fermions [3] to
fermionization of strongly interacting bosons in 1D [1,2].
In the latter case, hard-core bosons and noninteracting
fermions share identical thermodynamical properties despite
the fact that their correlation functions are different [5,6].
Another interesting route is to increase the number of spin

components N in SUðNÞ fermions leading to bosonization
[7]. Theoretically, such bosonization of SUðNÞ fermions has
been extensively studied in 1D [7–14]. In this particular
reduced dimension, exact solutions exist and allow one to
confirm bosonization in the large-N limit [7,8]. Experi-
mentally, this phenomenon has also been explored in 1D,
showing that the breathing mode of SUðNÞ fermions
approaches that of bosons with increasing N [15].
In spite of the aforementioned serious efforts of studying

bosonization of SUðNÞ fermions, some fundamental ques-
tions about bosonization of SUðNÞ fermions remain unan-
swered so far. First, does bosonization of SUðNÞ fermions
occur in high dimensions? Since exact solutions generically
do not exist beyond 1D, it is challenging to rigorously prove
the bosonization in high dimensions. In addition, the breath-
ing mode alone cannot tell whether other thermodynamic
quantities approach those of bosons. In practice, it is difficult
to measure all thermodynamic quantities. Therefore, is it
possible to use a single quantity to establish bosonization?
In this work, we explore bosonization of a 3D SUðNÞ

Fermi gas by measuring its central quantity, the so-called
contact C [16–18], and answer both questions. Through
celebrated universal relations, contacts govern other physi-
cal observables, such as the momentum distribution,
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the energy, the pressure, and a variety of spectroscopies
[19–24]. Therefore, the dependence of contacts on N
directly provides us with the evidence of bosonization
without resorting to measuring other thermodynamic quan-
tities. We choose 173Yb atoms as our sample, in which the
number of internal states accessible in experiments is
highly tunable, ranging from one to six. Because of the
strong decoupling between electronic and nuclear spins,
interactions between nuclear spins are isotropic, providing
the many-body system with a SUðNÞ symmetry and,
consequently, a wide range of exotic phenomena [25–28].
Whereas the SUðNÞ symmetry has been explored in

optical lattices [15,29–31], a spectroscopy [32–34], and
collective excitations [15,35], it is still challenging to
measure the rather small contact due to the weak inter-
actions between 173Yb atoms. To overcome this obstacle,
we develop a new protocol to extract the contact from the
column-integrated momentum distribution without using
the inverse-Abel transform, which allows a high signal-to-
noise ratio (SNR). We measure the temperature dependence
of the contact when the temperature T=TF decreases from
1.0 to 0.55 and compare experimental results with theo-
retical calculations based on the virial expansion. Whereas
the second-order virial expansion shows a scaling of
ðT=TFÞ−3=2, high-order virial coefficients lead to correc-
tions from other powers of T=TF. When N is fixed, no
change in the measured contact is observed for different
spin constituents, confirming the isotropic interaction. We
emphasize that the underlying mechanism for SUðNÞ
fermions, the large internal degree of freedom weakening
the Pauli exclusion principle, is the same for any temper-
ature and any interaction strength. In different parameter
regimes, the quantitative difference is how fast physical
observables approach those of bosons. We, thus, focus
on the temperature regime readily achievable in current
experiments to deliver evidence for bosonization in three
dimensions for the first time in laboratories, though the
multicomponent nature of SUðNÞ fermions may allow a
more efficient cooling down to even lower temperatures
[36]. Since only a finite N is accessible in realistic
experiments, it is critical to work out and experimentally
verify how physical observables scale with N so as to
access an unambiguous proof of bosonization in the large-
N limit. To this end, we further change the number of
nuclear spin components N and keep the number of atoms
per component constant at the same temperature and trap
geometry. We find a linear dependence of the contact with
N. Consequently, the contact per spin approaches a con-
stant with a scaling law of 1 − 1=N.

II. BOSONIZATION AND SCALING OF
CONTACTS IN SUðNÞ FERMIONS

The observed scalings of contacts can be qualitatively
understood as follows. As depicted in Fig. 1, in a balanced
SUðNÞ gas with N0 atoms per spin state, a single atom with

spin σ interacts with ðN − 1ÞN0 atoms in the other (N − 1)
spin components with spin σ0 (σ0 ≠ σ) through the s-wave
scattering. When interactions are spin independent, each
pair of atoms contributes an equal amount, cpair, to the large

momentum tail, nσ3Dðk⃗Þ ¼ C0=k43D, where k⃗ ¼ ðkx; ky; kzÞ is
a 3D momentum vector and its norm k3D ¼ jk⃗j is much
greater than kF and other microscopic momentum scales. In
the low-fugacity regime, where three-body correlations are
negligible, C0 ¼ cpairðN − 1ÞN2

0, i.e., scaled with (N − 1)
when the number of spins, N, is tuned. Correspondingly,
if we consider the total momentum distribution n3Dðk⃗Þ ¼P

σ n
σ
3Dðk⃗Þ, we could define the total contact CSUðNÞ ¼

NC0 ¼ cpairNðN − 1ÞN2
0. Dividing CSUðNÞ by N2

t , where
Nt ¼ NN0 is the total particle number, we obtain that
CSUðNÞ=N2

t ¼ cpairð1 − 1=NÞ.
In our experiment, p-wave scatterings are negligible, as

the current temperature regime is smaller than the barrier
of the p-wave interaction [37]. We, therefore, treat SU(1)
fermions as noninteracting systems. This is precisely the
origin of the 1=N factor in the scaling of CSUðNÞ=N2

t with N.
The Pauli exclusion principle suppresses the s-wave
scattering between two atoms with the same spin, as well
as their contributions to the s-wave contact. To make a
comparison, we consider spinless bosons with the same
Nt, T, and the same scattering length as. Though cpair is
independent on statistics, all NtðNt − 1Þ=2 pairs of par-
ticles in spinless bosons contribute to contacts such that
the high-momentum tail is written as nBðk⃗Þ ¼ CB=k43D,
where CB ¼ cpairNtðNt − 1Þ ≈ cpairN2

t for large N0, as
the momentum distribution of identical particles doubles
that of distinguishable particles. We obtain CSUðNÞ=N2

t ¼
CB=N2

t ð1 − 1=NÞ, which shows that the s-wave contact of
SUðNÞ fermions approaches that of bosons with a 1=N
scaling. Since C0=N ¼ ðCSUðNÞ=N2

t ÞN2
0, we use the contact

per spin, C0=N, to capture this scaling with a fixed N0.

N-1

SU(N)

FIG. 1. Illustration of s-wave contacts in SUðNÞ fermions with
tunable spin. Arrows with different colors and orientations denote
the different nuclear spin states as large as N ¼ 6. Dashed lines
represent pairs formed by two particles with different spins. Each
pair contributes equally to the contact, which leads to C ∝ N − 1.
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III. RESULTS

The experiment starts with degenerate fermions prepared
in a crossed hybrid optical dipole trap (ODT) consisting of
far-detuned 1064 and 532 nm laser light. A six-component
Fermi gas of 173Yb atoms, loaded from an intercombination
magneto-optical trap, is evaporatively cooled down to
the temperature of about 100 nK in the ODT in 6 s.
Along with the evaporation, an arbitrary spin mixture with
N ¼ 1; 2;…; 6 is prepared using optical pumping and
blasting processes [38]. Next, we exponentially ramp up
ODT to the final trap depth in 60 ms resulting in sufficiently
large trap frequencies (see the Appendix for details).
Finally, the momentum distribution after a 4 ms (TOF)
expansion is recorded in the kx-ky plane by absorption
imaging along the z direction using the resonant imaging
light of 1S0 → 1P1 transition. We note that the measurement
of contact at high momentum is negligibly affected by the
finite expansion time [39]. In Fig. 2(b), a typical high-
momentum tail is observed in the S profile after the
systematic noise is filtered out [40].
Our schematic protocol, for the high-precision measure-

ment of the contact, is based on the momentum distribution
of the atomic cloud after the time-of-flight expansion as
shown in Fig. 2. Typically, to measure contacts from the
momentum distribution, the atomic profile recorded in the
2D plane, which represents a column-integrated momen-
tum distribution, needs to be inverse-Abel transformed to a
3D momentum distribution. However, inverse-Abel trans-
form often intensifies measurement noise and exacerbates
the SNR, because it involves a derivative of the atomic
distribution, which inevitably limits the capability to
detect contacts in a weakly interacting SUðNÞ Fermi

gas. To overcome this limitation, we develop a protocol
to extract contacts directly based on the weight of the high-
momentum tail from a 2D time-of-flight image without
using the inverse-Abel transform.
When k3D is much greater than the inverse of the

harmonic oscillator length and other microscopic momen-
tum scales, nσ3Dðk⃗Þ becomes isotropic in 3D and approaches
C0=k43D. Here, we use C0 to distinguish the original definition
of contact from the scaled one, C, used in our experiment. To
be noted, in a spin-balanced Fermi gas with N components,
the atom density for each spin nσ3Dðk3DÞ is identical.
Hereafter, it is normalized such that

R
nσ3Dðk3DÞd3k3D ¼ 1

in our experiment. Correspondingly, the column-integrated
momentum distribution nσðkÞ ¼ R∞

−∞ nσ3Dðk3DÞdkz, which
follows

R
nσðkÞ2πkdk ¼ 1. The momentum is normalized

by the Fermi wave number kF ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2EFm

p
=ℏ with the Fermi

energy EF ¼ ℏω̄ð6N0Þ1=3. Here, ω̄ is the averaged trap
frequency, m is the mass of 173Yb, and ℏ is the reduced
Planck constant. Contact C can be experimentally deter-
mined from the high-momentum plateau of a term S ¼
2=π · k3nσðkÞ as follows (see the Appendix):

C ¼ lim
k→∞

SðkÞ ¼ lim
k→∞

2

π
· k3nσðkÞ ¼ C0

ð2πÞ3N0kF
: ð1Þ

Here, C is naturally normalized by the atom number per spin
N0 and the Fermi wave number kF. The key advantage of our
protocol is that no transform gets involved, resulting in a
high SNR ratio. To further diminish the noise of the atomic
profile, we typically repeat the measurement approximately
100 times, obtain an averaged image as shown in Fig. 2(a),
and then azimuthally average the momentum distribution

FIG. 2. Measurement of the contact parameter from the momentum distribution. (a) Momentum distribution of 173Yb atoms consisting
of N ¼ 6 nuclear spin states after 4 ms time-of-flight expansion. Dimensionless momentum k here is normalized by the Fermi wave
number kF. Note that momentum profile outside k ≃ 2.5 has already been subtracted by the momentum profile of the spin-polarized gas
(N ¼ 1) with the same total atom number. (b) S ¼ 2=π · k3nσðkÞ is plotted as a function of momentum k in units of kF. The inset is the
momentum tail of azimuthally averaged atomic distribution nσðkÞ in logarithmic scale with a dashed guideline of nσðkÞ ∝ k−3. The
nσðkÞ is normalized as

R
nσðkÞ2πkdk ¼ 1. The finite value of the contact is determined from the plateau of the S profile in the range of

k ¼ 3–4. The green and gray shaded areas indicate the standard error and the measured value of contact, respectively.
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profile with �0.2kF moving average. To be noted, the value
of the contact C measured by our protocol is in agreement
with the result extracted from the 3Dmomentum distribution
using the inverse Abel transform as described in the
Appendix.
Because of the small scattering length of 173Yb, contacts

in our SUðNÞ gas are contained in the large momentum tail
with an extremely small amplitude that is below a thou-
sandth of the maximum cloud density. To extract such a
high-momentum tail from the subtle density profile, we
first filter out the systematic noise (e.g., interference
fringes, imaging light fluctuation) using the statistical
method. Our protocol is based on statistical image decom-
position and projection methods using the data images
as a basis set and compensating for unwanted fringes
[40]. Second, we compare the high-momentum tail of
SUðN > 1Þ fermions with respect to noninteracting SU(1)
gases and extract the high-momentum tail of SUðN > 1Þ
gases after subtracting the counterpart of SU(1). This
process allows us to systematically eliminate the diffraction
effect arising from atoms. Note that, for a SU(1) gas, we
first separate the dataset of SU(1) into two parts and
analyze them using a similar procedure.
In Fig. 3, we show the measured C at temperatures

between T=TF ¼ 0.55 and T=TF ¼ 1 for SU(N ¼ 1, 3, 6).
We change the number of components, N ¼ 1; 2;…; 6
but keep the same number of atoms per spin component
N0 ¼ 6.7 × 103 in a 3D harmonic trap with frequencies
ðωx;ωy;ωzÞ¼2π×ð1400;750;250ÞHz, the averaged trap
frequency ω̄¼ðωxωyωzÞ1=3¼2π×640Hz and kFas ≃ 0.3.
We post-select data images according to the atom number
and temperature with a tolerance of approximately 0.1TF.
As expected, a spin-polarized SU(1) gas with negligible
p-wave scatterings does not exhibit a k4 momentum tail
within our experimental uncertainty, while the finite
contact is clearly observed for a SU(6) or SU(3) Fermi
gas in Fig. 3(a). Within the temperature regime we explore,
the contact increases as the temperature T=TF decreases.
In Fig. 4, we test the scaling of the contact with the

number of the spin components in SUðNÞ Fermi gases. We
first collapse data points in Fig. 3(a) to the Fermi temper-
ature using C ∝ ðT=TFÞ−3=2 shown in Fig. 3(b). The results
show that the temperature dependence of C is qualitatively
consistent with the ðT=TFÞ−3=2 scaling, a prediction from
the second-order virial expansion (see the Appendix).
However, high-order virial expansions lead to corrections
to the temperature dependence of the contact, and both the
third and the fourth virial coefficients b3 and b4, respec-
tively, give rise to other powers of T=TF in the expression
of the contact (see the Appendix). Such corrections are
plotted in both Figs. 3(a) and 3(b). Since the result from the
second-order virial expansion qualitatively captures tem-
perature dependence and the current resolution in our
experiment is not sufficient to accurately determine high-
order corrections, we empirically extract the mean values of

collapsed contacts to the Fermi temperature and further
explore the dependence of the contact on N. Figure 4(a)
shows that C depends linearly on (N − 1), and Fig. 4(b)
demonstrates that C=N ∼ C0=N approaches a constant with
a 1=N scaling. Because of the smallness of as=λ, where
λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πℏ2=ðmkBTÞ

p
is the thermal wavelength, high-order

virial expansions do not change the 1=N scaling in the
current parameter regime of our experiments (see the
Appendix). All results are consistent with the qualitative
picture we previously provided.
To measure nσðkÞ, we need to release atoms from the trap.

Because of the absence of Feshbach resonance, interactions
here cannot be turned off, unlike 40K for studying s-wave
contacts of two-component fermions [21]. Interactions lead
to complex expansion dynamics that are difficult to compute
in theory. Therefore, it is illuminating to theoretically study
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FIG. 3. Temperature scaling of contacts in SUðNÞ fermions.
(a) Contacts are measured at different temperatures in the SUðNÞ
Fermi gases. The error bars represent one standard deviation in
the plateau area of S profile. The solid curves are theoretical
results multiplied by a factor of 7.5. Spin configuration of
different SUðNÞ gases are presented by arrows in spheres, and
the circle with nothing inside indicates the absence of the spin
state. Details of spin configurations and preparation of different
SUðNÞ gases are described in the Appendix. Solid curves
represent the results from the second-order virial expansion
C ∝ ðT=TFÞ−3=2. Dashed and dotted curves represent results
including corrections up to b3 and b4, respectively. (b) Using
the temperature scaling C ∝ ðT=TFÞ−3=2, contacts of SUðNÞ
gases at different temperatures are collapsed to the Fermi
temperature T ¼ TF. The solid lines are means of collapsed
contacts. The shaded gray area indicates the experimental
uncertainty, which consists of the standard error and the standard
deviation of each point. Dashed and dotted theoretical curves
including high-order corrections are no longer flat. A horizontal
error bar of �0.05T=TF is not shown for every data point.
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contacts of trapped gases before the expansion. We compute
contacts in the temperature regime explored in the experi-
ments, 0.55 ≤ T=TF ≤ 1.0, where the second-order virial
expansion works well and high-order virial expansions are
negligible [41,42]. The virial expansion has been well
established as a powerful tool to unfold fundamentally
important principles using results at high temperatures, for
instance, the universality of fermions at resonance [43,44].
Here, the spirit is the same. The virial expansion not only
allows us to obtain quantitatively the ð1 − 1=NÞ scaling in
three dimensions where exact solutions generically do not
exist, but also reveals the crucial role of the large internal
degree of freedom in bosonization. We evaluate the local
contact at the position r⃗ based on its local chemical potential
μloc ¼ μ0 − Vðr⃗Þ, where μ0 is the chemical potential at the
center of the trap and Vðr⃗Þ is the harmonic trapping
potential. The total contact is obtained by integrating local
contacts in the trap. Using the second-order virial expansion,

the contact is written as C0 ¼ kBTð8πm=ℏ2ÞðkBT=ℏωÞ3
z2ða2s=23=2λÞðN − 1Þ. z ¼ eβμloc is the fugacity. In this
temperature regime, the chemical potential μ0 is well
approximated by μ0 ¼ −T=TF · log½6ðT=TFÞ3�EF [45].
We obtain

C ¼ C0
ð2πÞ3N0kF

≈
ma2s

6ð2πÞ5=2ℏ2

EF

ðT=TFÞ3=2
ðN − 1Þ: ð2Þ

We observe that C scales with N − 1 and ðT=TFÞ−3=2 in the
high-temperature regime. In our experiments, as=λ ranges
between 0.06 and 0.08. In such a weakly interacting regime,
corrections from high-order virial coefficients modify the
temperature dependence but not the scaling with N (see the
Appendix). Both scalings with T and N are consistent with
the aforementioned experimental results, suggesting that
interactions during the expansion do not change the scalings
of the contact with T and N.
Using the virial expansion, the s-wave contact of the

spinless boson is also obtained explicitly in the same low-
fugacity regime (see the Appendix). The second-order
virial expansion leads to

CSUðNÞ ¼ NC0 ¼
�
1 −

1

N

�
CB: ð3Þ

As contact is the central quantity to control the many-body
system, Eq. (3) is a direct proof of the bosonization without
resorting to any other quantities, such as the full momentum
distribution. Corrections from the third and the fourth virial
coefficients introduce an extra temperature-dependent
factor in Eq. (3) (see the Appendix).
Whereas scalings of the measured contacts with N and T

after the expansion are consistent with theoretical results
of trapped gases, experimental results lie systematically
above theoretical ones, the former about 7.5 times greater
than the latter (see the Appendix). It is interesting to note
that such a discrepancy is also observed in an experiment
measuring contacts of a weakly interacting Bose-Einstein
condensate of 4He atoms [46]. Interactions remain finite
during expansions in both cases. It is, therefore, possible
that interaction effects during the expansion lead to the
aforementioned discrepancy. However, the current resolu-
tion limits our capability to measure the time dependence of
contacts in the expansion, which by itself is an interesting
question concerning the nonequilibrium dynamics of con-
tacts. To avoid this issue and directly access contacts of
trapped gases, an alternative scheme is the Bragg spec-
troscopy without the expansion [47].

IV. DISCUSSIONS AND CONCLUSION

Whereas we focus on the high-temperature regime, it
will be interesting to explore the low-temperature regime in
the future. First, it is desirable to experimentally resolve
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corrections to the 1=N scaling, which will allow us to
understand how three-body and four-body correlations may
affect contacts and bosonization. Second, with further
decreasing T down to below the superfluid transition
temperature, our scheme of measuring contacts without
using the inverse-Abel transform will provide us with an
even richer playground to study contacts of superfluids
with the SUðNÞ symmetry. It has been shown that contacts
of superfluids are directly related to the superfluid order
parameters [48,49]. It will be interesting to investigate how
the interplay between the superfluid order and the SUðNÞ
symmetry may bring us new macroscopic quantum phe-
nomena and new universal relations governed by contacts,
which may reveal deep connections between short-range
correlations and many-body coherence.
It is worth mentioning that, due to the small scattering

length of ytterbium, it is a difficult task to reach the
exponentially small superfluid transition temperature.
Though using other species with larger scattering lengths
could increase the superfluid transition temperature, there
are currently two SUðNÞ species with N > 2 available in
laboratories, 173Yb and 87Sr. Unfortunately, the latter has an
even smaller as than the 173Ybwe are using now. As such, a
more practical approach is to implement advanced cooling
schemes, such as those engineering thermal reservoirs to
absorb entropy from the system of interest [50,51]. Such
schemes have been recently used to access long-range
antiferromagnetic order in optical lattices [52]. It has also
been recently used to access an extremely low entropy per
particle of bosons down to 0.002kb in optical lattices
[53]. Converting such entropy to the temperatures of ideal
fermions leads to T=EF ∼ 0.0004, a temperature scale
below the superfluid transition temperature of the weakly
interacting 173Yb (T=EF ∼ 0.005 for N ¼ 2). It is, thus,
promising that superfluid transitions of SUðNÞ fermions
will be accessible in the near future once the aforemen-
tioned cooling schemes or similar ones are implemented.
In particular, the large spin degree of freedom may help
SUðNÞ fermions to achieve even lower temperatures than
spinless bosons, due to the Pomeranchuk effect [29]. It is
then expected that utilizing similar schemes in SUðNÞ
fermions will lead physicists to a new playground for
exploring bosonization and many other exciting phenom-
ena in the presence of both a large internal degree of
freedom and symmetry breaking.
In addition to SUðNÞ fermions, our high-sensitivity

measurement of contact in a microscopic level is also
useful for other systems. For instance, contacts has been
theoretically established as a powerful tool to explore deep
connections between short-range correlations and many-
body physics in spin-orbit coupled systems [54–56]. Since
spin-orbit coupling is the fundamental mechanism behind
topological quantum matters, we hope that our work
will stimulate systematic studies of contacts in topological
physics.
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APPENDIX: EXPERIMENTAL DETAILS AND
THEORETICAL MODELS

1. Preparation of SUðNÞ gases
SUðNÞ symmetric interaction in the ground state 1S0

of 173Yb atoms emerges from the decoupling between
nuclear spin and orbital angular momentum (J ¼ 0).
Exploiting the energy splitting of the excited state in
3P1 to our advantage, the narrow linewidth transition
1S0ðF ¼ 5=2Þ → 3P1ðF0 ¼ 7=2Þ, with wavelength λ ¼
556 nm and natural linewidth Γ ¼ 2π × 181 kHz, is used
as a blasting light to remove unwanted mF states of the
ground manifold 1S0.
The preparation starts with a gas of spin-balanced sixmF

states which is initially loaded in an optical dipole trap.
A sequence of short pulses of σ� optical blasting light
resonance to transition mF → mF � 1 is applied after the
end of the evaporative cooling, where the temperature of
atoms is T ∼ 100 nK. The magnetic field of 3.6 G is
applied, leading to a Zeeman splitting of 8.4 MHz ∼ 46Γ
between two adjacent mF states in the 3P1 state. Taking the
preparation of a spin-balanced SU(2) gas as an example,
we shine pulses of resonant blasting light with transitions
mF ¼ 1=2 → m0

F ¼ 3=2 and mF ¼ 3=2 → m0
F ¼ 5=2 with

σþ polarization to remove positive mF ¼ 1=2 and
mF ¼ 3=2, respectively, and mF ¼ −1=2 → m0

F ¼ −3=2
and mF ¼ −3=2 → m0

F ¼ −5=2 with σ− polarization to
remove negative mF ¼ −1=2 and mF ¼ −3=2, respec-
tively, and the duration of each pulse is 5 ms. Following
a similar method, arbitrary spin configuration of the SUðNÞ
(N ¼ 1; 2;…; 6) gas can be prepared by the combination
of σþ and σ− lights. The spin configurations of different
SUðNÞ gases used in the experiment are detected by optical
Stern-Gerlach effect [38] as shown in Fig. 5.
Notably, we use optical pumping to prepare spin-

polarized gases (N ¼ 1) with different atom numbers. At
the beginning of evaporation, we first optically pump most
of atoms to the mF ¼ 5=2 state using another optical
pumping light 400 MHz red detuned from the resonance
with 1S0 → 1p1 transition. The pumping pulse time is
300 ms. Note that we intentionally leave other spin states
for the sake of the evaporative cooling. At the end of the
evaporation, all the other remained spin states are removed
by 556 nm resonance light pulses similar to the procedure
of SUðNÞ gas preparation.
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We further increase the trap depth to obtain large trap
frequency, after the preparation of degenerate Fermi gases
with different spin components at the temperature of
approximately 100 nK. VðtÞ, the trap depth of ODT, is
increased exponentially from the initial Vi to the final trap
depth Vf in tf ¼ 60 ms with a time constant τ ¼ 12 ms as
follows:

VðtÞ ¼ aet=τ þ b; ðA1Þ
where a ¼ ðVf − ViÞ=ðetf=τ − 1Þ and b ¼ Vi − a. We
experimentally test that T=TF values of both noninteracting
gases (N ¼ 1) and weakly interacting gases (N ¼ 6) are
conserved during the ODT is ramped up as shown in Fig. 6.

2. Proof of the contact relation between C and C0

Different from the original approach using the inverse
Abel transform to get 3D normalized distribution nσ3DðkÞ
from 2D TOF image [21], the method demonstrated here is
more robust against noise, because the contact is directly

extracted based on the radial averaged atomic distribution
nσðkÞ from the 2D TOF image, illustrated in Fig. 2(a) in the
main text. We calculate a term S ¼ 2=π · k3nσðkÞ as a
function of momentum k. The value of contact is exper-
imentally extracted from the end tail of S profile. The
contact C is, therefore, determined as C ¼ limk→∞ S, which
is slightly different from the original definition C0 [16,17].
Contact defined here is naturally normalized by atom
number per spin state N0 and wave number kF and is
associated with C0 as C ¼ C0=½ð2πÞ3N0kF�. Here is the
detail of the proof. In a spherical symmetry system which is
confirmed experimentally, we start the derivation from the
original definition of the contact C0 [16,17],

C0 ¼ ð2πÞ3N0kF lim
k3D→∞

k43Dn
σ
3Dðk3DÞ; ðA2Þ

where 3D wave vector k3D is normalized by kF
and 3D density nσ3Dðk3DÞ is normalized such thatR
nσ3Dðk3DÞd3k3D ¼ 1. The contact C defined in this article

is written as

C ¼ lim
k→∞

S

¼ lim
k→∞

2=π · k3nσðkÞ

¼ 2=π lim
k→∞

k3
Z

∞

−∞
nσ3Dðk3DÞdkz: ðA3Þ

Here, we substitute the radial averaged atomic density
with nσðkÞ ¼ R∞

−∞ nσ3Dðk3DÞdkz. From Eq. (A2), for large
k3D, the 3D atomic density can be expressed as
nσ3D ¼ C0=½ð2πÞ3N0kF� · k−43D þOðk−53DÞ, in which Oðk−53DÞ
is the higher-order term. Substituting nσ3D into Eq. (A3),
with wave vector relation k23D ¼ k2 þ k2z ,

C ¼ 2C0
πð2πÞ3N0kF

lim
k→∞

k3
Z

∞

−∞

dkz
ðk2 þ k2zÞ2

¼ C0
ð2πÞ3N0kF

: ðA4Þ

N�6 5 4 3 2 1

mF ��5/2

�3/2
�1/2

�1/2

�3/2
�5/2

FIG. 5. Fermi gases with tunable spin components. Unwanted spin components are removed by short pulses of resonant σþ and σ−

atomic transitions from 1S0 → 1p1 in an around 13.6 G magnetic field. From left to right, the number of spin states is prepared from
N ¼ 6 to N ¼ 1. Optical Stern-Gerlach detection is used to monitor the spin configurations, and split subclouds from top to bottom are
mF ¼ −5=2 to mF ¼ 5=2.

FIG. 6. The ramp-up of the optical dipole trap. T=TF of
both noninteracting gases (N ¼ 1) and weakly interacting gases
(N ¼ 6) are conserved during ramping up the optical dipole trap.
The ODT is increased exponentially in tramp ¼ 60 ms with the
time constant τ ¼ 12 ms (inset). Gases with N ¼ 1 and N¼6
components are initially prepared at T ¼ 0.35TF and 0.5TF,
respectively.
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It is worth noting that we assume the momentum
distribution is integrated over the momentum kz in
Eqs. (A3) and (A4). However, the true momentum dis-
tribution along the kz can be slightly perturbed by atom-
atom interactions during the expansion. If this is the case,
the measured contact C may be proportional to Eq. (6)
with an unknown factor. To investigate this effect, we
extract the value of contact from the three-dimensional
density distribution using the inverse Abel transform in
Fig. 7, which does not require any approximation used in
Eqs. (A3) and (A4). The contact measured from the three-
dimensional density distribution is in good agreement with
our result, validating our detection method.

3. Theoretical model of contacts of SUðNÞ fermions

In the grand-canonical ensemble, the thermodynamic
potential Ω for SUðNÞ fermions can be expanded as a
Taylor series at fugacity z (virial expansion):

Ω ¼ −kBTQ1ðTÞ
�
Nzþ Nbni2 z

2

þ NðN − 1Þ
2

b2ðT; asÞz2 þ � � �
�
; ðA5Þ

where Q1ðTÞ is the single-particle partition function,
bni2 is the intraspecies second-order virial coefficient which
purely arises from particle statistics, and b2 is the inter-
species second-order virial coefficient which typically
depends on the scattering length and temperature. Using
the adiabatic relation [17]

� ∂Ω
−a−1s

�
T;μ

¼ ℏ2N
8πm

C0; ðA6Þ

we obtain an virial expansion of the contact from Ref. [57]:

C0 ¼ kBT
4πm
ℏ2

Q1ðTÞz2
∂b2ðT; asÞ

∂a−1s ðN − 1Þ: ðA7Þ

Comparing the Taylor expansion of the grand canonical
potential Ω with the virial coefficient, we obtain

b2ðas; TÞ ¼ Q1;1=Q1; ðA8Þ

where Q1;1 is the partition function of two particles of
different species in the anisotropic trap. According to
Ref. [58], one could transform the problem, to a very good
approximation at high temperature, to a spherical harmonic
trap where trapping frequency ω̃ satisfies

3ω̃2 ¼ ω2
x þ ω2

y þ ω2
z : ðA9Þ

Using the energy spectrum of two particles under isotropic
harmonic confinement at any scattering length obtained
from solutions in Ref. [59], we can numerically determine
the partition function as well as the derivative with respect
to a−1s .
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3D(k)�k-4

k

(a)

FIG. 7. Extracting the contact from the 3D momentum dis-
tribution. (a) 3D momentum distribution of a SU(6) gas is
obtained from the column-integrated distribution (the same data
in Fig. 1 in the main text) using an inverse Abel transform. The
3D density in high-momentum k follows the power law
nσ3DðkÞ ∼ k−4, which gives the contact C ¼ 0.007ð1Þ with
95% confidence. (b) The contact is extracted from the tail of
the term nσ3DðkÞk4 for 3 < k < 4. The mean (one standard
deviation in parentheses) is 0.006(3). The value of the contact
extracted from the 3D momentum distribution is in agreement
with the result of our method 0.0067(5) but has a larger
uncertainty.
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(/
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3

FIG. 8. Scaled contact vs temperature. Contact of different
SUðNÞ gases is scaled on the N ¼ 2 components case by
C=ðN − 1Þ. The solid curve is the theoretical simulation multi-
plied by a factor of 7.5.
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According to the local density approximation, at high
temperature where kBT ≫ ℏω̄, the virial coefficient for the
trapped system can be related to that of the homogeneous
system:

b2 ≈ bhomo
2 =23=2; ðA10Þ

Q1 ≈ ðkBT=ℏω̄Þ3; ðA11Þ

where ω̄3 ¼ ωxωyωz. From Ref. [43], one obtains bhomo
2 ¼

−2as=λ, where λ is the thermal de Broglie length.
Combining the equations above, under local density
approximation, we obtain

C0 ¼ kBT
4πm
ℏ2

ðkBT=ℏω̄Þ3z2
2a2s
23=2λ

ðN − 1Þ: ðA12Þ

In the high-temperature limit, z ¼ N0ðℏω̄=kBTÞ3. The total
contact of SUðNÞ fermions is then written as

CSUðNÞ ¼ NC0 ¼ N2
0NðN − 1Þ 2

ffiffiffi
2

p
πm

ℏ2

ðℏω̄Þ3
ðkBTÞ2

a2s
λ
: ðA13Þ

The ðN − 1Þ dependence of measured contact is shown
in Fig. 8.

4. Contact of single-component Bose gas

Applying the virial expansion to a single-component
Bose gas, the thermodynamic potential ΩB at high temper-
atures is written as

ΩB ¼ −kBTQ1ðTÞ½zB þ bniB2 z2B þ b2ðT; asÞz2B þ…�:
ðA14Þ

Here b2 is the second order virial coefficient for two
distinguishable particles, i.e., the same as that for the
intraspecies b2 for SUðNÞ fermions, and bniB2 is a term
that accounts for bosonic statistics which is independent of
the scattering length. Using the adiabatic relation [17],

�∂ΩB

−a−1s

�
T;μ

¼ ℏ2

8πm
CB; ðA15Þ

we obtain a virial expansion of the contact:

CB ¼ kBT
8πm
ℏ2

Q1ðTÞz2
∂b2ðT; asÞ

∂a−1s : ðA16Þ

Using zB ¼ NN0ðℏω̄=kBTÞ3, we obtain

CB ¼ ðN0NÞ2 2
ffiffiffi
2

p
πm

ℏ2

ðℏω̄Þ3
ðkBTÞ2

a2s
λ
: ðA17Þ

Comparing CB and CSUðNÞ, we obtain

CSUðNÞ ¼
N − 1

N
CB: ðA18Þ

In the limit N → ∞, CSUðNÞ approaches CB with a scaling
of 1=N.

5. High-order virial expansions

With decreasing temperature, high-order virial expan-
sions are required. We consider corrections up to b4, i.e.,

Ω ¼ −kBTQ1ðTÞ
�
Nzþ Nbni2 z

2 þ NðN − 1Þ
2

b2ðT; asÞz2
�

− kBTðΩ3z3 þΩ4z4…Þ; ðA19Þ

where

Ω3 ¼
�
N
3

�
Q1;1;1 þ 2

�
N
2

�
Q1;2 þ NQ3

− NQ1

�
NQ2 þ

�
N
2

�
Q1;1

�
þ N3Q3

1=3; ðA20Þ

Ω4 ¼ NðN − 1ÞQ1;3 þ
�
N
2

�
Q2;2 þ

�
N − 1

2

�
NQ1;1;2

þ
�
N
4

�
Q1;1;1;1 þ NQ4

− NQ1

��
N
3

�
Q1;1;1 þ NQ3 þ NðN − 1ÞQ1;2

�

−
1

2

��
N
2

�
Q1;1 þ NQ2 − N2Q2

1

�
2

þ 1

2
N4Q4

1:

ðA21Þ

Here, ðNkÞ ¼ N!=½k!ðN − kÞ!� is the binomial coefficient,
Qn1;n2…;nN means the partition function of theN-component
fermionic system with ni number of fermions in the ith
component, and the order of n1; n2…; nN does not matter
because all spins are equivalent. For instance, Q1;2 means
the partition function of three fermions with one particle in
one spin state and two particles in another one. When each
of the three fermions occupies a different spin state, its
partition function is denoted by Q1;1;1.
In our experiment, as=λ is a small number between 0.06

and 0.08. In such a weakly interaction regime, where
ðas=λÞ2≪1,Q1;1;1 ¼ Q3

1 þ 3ðQ1;1 −Q2
1ÞQ1 þO½ðas=λÞ2�.

This result can be understood from the fact that the partition
function of three fermions, all of which occupy different
spin states, reduces to Q3

1 in the noninteracting limit.
Turning on a weak interaction, the leading correction is
3ðQ1;1 −Q2

1ÞQ1 ∼ as=λ; i.e., these three fermions can be
decomposed to a pair of particles, which are interacting
with the two-body interaction, and a remaining one that
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does not interact with the pair. The factor of 3 comes from
the three ways of such decomposition. We thus obtain

Ω3 ¼ 2

�
N
2

�
ðQ1;2 −Q1Q2 −Q1;1Q1 þQ3

1Þ

þ NðQ3 −Q1Q2 þQ3
1=3Þ: ðA22Þ

Similar to what we see in the second-order virial expansion,
Ω3 can also be separated into two parts: One is the result of
noninteracting systems, and other is the correction from
interactions. We thus rewrite the above equation as

Ω3=Q1 ¼ NðN − 1Þbint3 þ Nbni3 ; ðA23Þ

where bint3 ≡ ðQ1;2 −Q1Q2 −Q1;1Q1 þQ3
1Þ=Q1 and bni3 ≡

ðQ3 −Q1Q2 þQ3
1=3Þ=Q1. Again, the noninteracting part

of b3 is proportional to N, while the contribution from
interactions is proportional to NðN − 1Þ. Higher powers
of N, such as NðN − 1ÞðN − 2Þ, which is at least of the
order of ðas=λÞ2, are high-order corrections and, thus, are
negligible in the weakly interacting regime.
The same analyses can be applied to b4. In the weakly

interacting regime, as=λ ≪ 1, the partition functions of
more than three spin components can be expressed in terms
of those of two- and one-spin components. We thus obtain

−
Ω

NkBTQ1

¼ zþ 1

2
z2½ðN − 1Þbint2 þ bni2 �

þ 1

3
z3½3ðN − 1Þbint3 þ bni3 �

þ 1

4
z4½4ðN − 1Þbint4 þ bni4 � þ � � � ; ðA24Þ

where bn are expanded in terms of as=λ:

bni2 ¼ −1=8; ðA25Þ

bint2 ¼ −
asffiffiffi
2

p
λ
þO

�
as
λ

�
2

; ðA26Þ

bni3 ¼ 1=27; ðA27Þ

bint3 ¼ as
3

ffiffiffi
6

p
λ
þO

�
as
λ

�
2

; ðA28Þ

bni4 ¼ −1=64; ðA29Þ

bint4 ¼ −
�
1

64
þ 1

12
ffiffiffi
3

p
�
as
λ
þO

�
as
λ

�
2

: ðA30Þ

To derive these expressions, we have adopted the results
of SU(2) Fermi gas, i.e., Q1;2, Q1;3, etc., [60]. As expected,
the dimensionless bn must be a power series of the

dimensionless parameter as=λ. Using Ω, we obtain both
the total particle number and the contact:

NN0 ¼ −
∂Ω
∂μ ¼ −

∂Ω
∂z

∂z
∂μ ¼ −

∂Ω
∂z

z
kBT

; ðA31Þ

Nℏ2

8πm
C0 ¼ −

∂Ω
∂a−1s ; ðA32Þ

both of which can be expressed in power series of z.
Eliminating z, we obtain the contact as a function of N, N0,
and T:

Cð4Þ0 ¼ Cð2Þ0 fF

�
T
TF

; kFas

�
; ðA33Þ

fF

�
T
TF

;kFas

�

¼
�
1−

�
1

9
ffiffiffi
3

p −
1

48

�
ðT=TFÞ−3

þ
�

1

108
ffiffiffi
6

p þ 1

576
ffiffiffi
2

p −
5

31104
−

1

216
ffiffiffi
3

p
�
ðT=TFÞ−6

þðN−1ÞkFas
12

ffiffiffiffiffiffi
2π

p ðT=TFÞ−5=2þ2

�ðN−1ÞkFas
12

ffiffiffiffiffiffi
2π

p
�

2

ðT=TFÞ−5

−ðN−1ÞkFas
2

ffiffiffi
π

p
�

7

108
ffiffiffi
6

p −
1

72
ffiffiffi
2

p
�
ðT=TFÞ−11=2þ���

�
;

ðA34Þ

which is accurate up to ðT=TFÞ−6. This function requires us
to include contributions up to b4 in Eq. (A32) and up to b3
in Eq. (A31). Here, the Fermi temperature is a function
of N0, TF ¼ ℏω̄ð6N0Þ1=3=kB, and as=λ is replaced by

ðkFas=2
ffiffiffi
π

p Þ ffiffiffiffiffiffiffiffiffiffiffiffi
T=TF

p
. Cð2Þ0 is the previously obtained con-

tact in the second-order virial expansion, as shown in

Eq. (A12). Since Cð2Þ0 ∼ ðN − 1Þ, the last three terms in the
above equation lead to higher powers ofN in the scalings of
the contact with N. However, all of them are much smaller
than the other terms due to the smallness of kFas and as=λ.
Using our experimental parameters, the total correction
from these (N − 1)-dependent terms for N ¼ 6 is up to
13%, 10%, and 5% for T=TF ¼ 0.55, 0.69, and 1,
respectively. Thus, C¼½C0=ð2πÞ3N0kF� scales with (N − 1)
in our experiments.
The slope of the linear scaling of C with N − 1 is

temperature dependent. Theoretical results plotted in Fig. 9
show that the slope increases with decreasing T. This result
is also observed in experiments. As shown in Fig. 3(b),
our experimental resolution is not able to distinguish the
small curvatures, which come from the small high-order
corrections to the linear scaling of C with N − 1. As such,
we use a linear fitting to obtain the slope. Again, the
theoretical results of the slope are about 6–9 times of the
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experimentally observed ones due to the expansion dynam-
ics, as explained in the main text.
If we keep only contributions up to b3 in Eq. (A32) and

b2 in Eq. (A31),

Cð3Þ0 ¼ Cð2Þ0

�
1 −

�
1

9
ffiffiffi
3

p −
1

48

�
ðT=TFÞ−3

þðN − 1ÞkFas
12

ffiffiffiffiffiffi
2π

p ðT=TFÞ−5=2 þ � � �
�
: ðA35Þ

Both results are presented in Fig. 3 of the main text.

6. High-order virial expansions for bosons

The above analysis can be applied to bosons as well:

Cð4ÞB ¼ Cð2ÞB fB

�
T
TF

; kFas

�
; ðA36Þ

fB

�
T
TF

; kFas

�

¼
�
1þ

�
1

9
ffiffiffi
3

p −
1

48

�
NðT=TFÞ−3

þ
�

1

108
ffiffiffi
6

p þ 1

576
ffiffiffi
2

p −
5

31104
−

1

216
ffiffiffi
3

p
�
N2ðT=TFÞ−6

þ kFas
6

ffiffiffiffiffiffi
2π

p N5=6ðT=TFÞ−5=2 þ
ðkFasÞ2
36π

N5=3ðT=TFÞ−5

þ
�

7

54
ffiffiffi
6

p −
1

36
ffiffiffi
2

p
�
kFas
2

ffiffiffi
π

p N11=6ðT=TFÞ−11=2…
�
:

ðA37Þ

Here, Cð2ÞB is the previously obtained contact of bosons in
the second-order virial expansion, as shown in Eq. (A17).

TF is defined to be the Fermi temperature of the
corresponding Fermi gas of a single component, TF ¼
ℏω̄ð6N0Þ1=3=kB, for convenience of comparison. Using the
results of both bosons and SUðNÞ fermions, we obtain

Cð4ÞSUðNÞ ¼ NCð4Þ0 ¼ α

�
T
TF

; kFas

��
1 −

1

N

�
Cð4ÞB ; ðA38Þ

where α½ðT=TFÞ; kFas� ¼ ½fBðT=TF; kFasÞ=fFðT=TF;
kFasÞ�. The virial expansion works for SUðNÞ fermions
and bosons in the temperature regimes T ≳ 0.55TF and
T ≳ 0.55N1=3TF, respectively. At T ≫ 0.55N1=3TF, both
fF½ðT=TFÞ; kFa� and fB½ðT=TFÞ; kFa� can be well approxi-
mated by 1. As such, Cð4ÞSUðNÞ → Cð4ÞB when N → ∞.
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