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DEFINITION OF (C,
The non-abelian Berry connection A7, non-abelian Berry curvature F}j}", and non-abelian second Chern number
are defined as [1].
AP = =iV [0, W), FR = 0, A0 — 0, A" +i[A,, AT (S1)
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2= 50 /S dRe o (TE[Fru Fp] = Tr[Flu | TY[Fpa)). (52)

NON-INTERACTING C>

Single-particle ground state of the Hamiltonian in Eq. (1) of the main text is doubly degenerate. Denote the two
states as 1, and ¢, and define AT = —i (0,9m[0,%n), the Berry curvature reads

Pt = A — Al +i[Au, A (S3)
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Because of the time-reversal symmetry, the traces of the Berry connection and the Berry curvature are zero,

At = — AV TvF,, =0. (S4)
We also have A7, = Af’,z. Defining
- Aaa Aab
A= (4 ) (55)
! AW _AIW
F}w = A;w + iAqu (86)

and using the property of the Levi-Civita symbol, we express the second Chern number using an alternative form,
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g4 ™ S4

G =5

The above results can be generalized to N particles.

For N non-interacting bosons, there are N + 1 degenerate ground states. Using Fock states as basis states, the
ground state reads |N — i,i), where ¢ takes the values of 0,1,2,..., N; here |N — i,i) represent the N — i bosons in
state 1, and i bosons in state 5. The Berry connection A, and matrix A, are tridiagonal in the Fock state basis.

AT =i N =i+ 10 = 19u|N —iyi) = V/i(N — 1+ 1) A (58)
AFTV = i (N = i 0,N — i+ 1,0 — 1) = iV — 1+ 1) A% (S9)
Abi = i (N — i, i|0,|N — i) = (N — i) A% + A% = (N — 2i) A%, (S10)

The same holds for the le matrix,

Azl = (N =i+ 1,0 = 1900 |N = i,i) = /i(N — 1+ 1)A, (S11)
A= = (N = if0uB0|N — i+ 1,0 — 1) = i(N — 1+ 1) A (512)
Ait = (N — 2)Asa. (S13)



Note that A7Y and AjjY are for single particle if x,y is a or b and are for N particles elsewise. Same as that for N =1,
the second Chern number for arbitrary N can also be calculated using Eq. (S5).

We break the integrand €, )\ Tr[F,,, Fyy] into two parts, €,,mTr[F, A, and 2ie,,, ) Tr[A,, A,A,] (note that
€uwprTr[A, AL A,Ay] is 0). Writing down the trace explicitly and expressing the two terms in terms of the single
particle quantities, we obtain

Tl Ay Ap] = D A5 AL +ZAZ AL +ZA“ LA (S14)
N B N-1
=SV - 202 A% A% + 7 (i + 1)(N ) (A;f;Ag + Abe je ) (S15)
=0 =0
Tr{ A, A, A ZA (Aprragts aptagyt) (S16)
n ZAfii_l (A;‘)—l,i—lAi\—l,i +AZ—1,¢A1/'\,¢) (S17)
+ 3 A (A:‘)H,iﬂAz/'\H,i I A;“’iAf\’i> (S18)
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1=0
Using the identity
N
1 . L
NI+ (N +2) = =Y (N = 20)(N =i+ 1)i, (S21)
=0
we write CY(N) using C9(1),
1
CY(N) = 6N(N+1)(N+2)C2( )= NIV +1)(N +2). (S22)

LOCATION AND CHARGE OF YANG MONOPOLES FOR ODD N AND POSITIVE ¢

Along the Ry axis, all off-diagonal couplings disappear and Fock states become the eigenstates. Varying Ry, we
find N possible points on this axis where there exist four-fold degeneracy.

(a) N =4m +1 for integer m

The four states, /m—Il+1,m+I,m+Ii,m—10),m—-Im+Il+1,m+Iim-=10, i m—Im+im+Il+1,m-—1),
and |m —I,m+1,m+1,m—1+1) are degenerate when Rs = —2lg, where | = —m,—-m + 1,...,m — 1,m. The
effective Hamiltonian reads

tij =tij/(m =1+ 1)(m+1+1). (S24)

The extra Bose enhancement factor comparing to the single particle Hamiltonian does not change the second Chern
number, so Cy = 1.

At Rs = —(20 + 1)g, the other four states, |m —{ -1, m+I+1,m+Il+1m—0),/m—-I,m+Iim+Il+1,m-1),
lm—I,m+Il+1,m+Ilm—10),and /m—I—1,m+1+1,m+1+1,m—1) are degenerate, where | = —m,—m +
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FIG. S1. (Color online) Schematic of Yang monopoles for 3 particles with positive interaction strength g. Blue (red) spheres
show the positively (negatively) charged monopoles. Charges are denoted inside the sphere. The insects (a), (b), and (c) show
the degenerate states at Rs = ¢,0,, and —g,respectively; here Ry = Ry = R3 = R4 = 0. The insect (d) shows the effective
Hamiltonian in the vicinity of Rs = g, R1 = R2 = Rz = R4 = 0. Orange solid lines and black dots represent single particle
states and bosons, respectively. Purple dotted arrows show effective couplings.

1,...,m —2,m — 1. The effective Hamiltonian reads
iy =t/ (m—1)(m+1+1). (S26)

The extra Bose enhancement factor together with an additional phase factor e!™ comparing to the single particle
Hamiltonian does not change the second Chern number but flipping the sign of the diagonal terms changes C5 to —1.

(b) N =4m + 3 for integer m

At R; = —2lg, the four states, [m —Ii,m+I+1,m+I+1,m—-I1+1), m—I+1m+Iim+l+1,m—-101+1),
Im—1,m+Il+1,m+lm—I+1),and jm—I+1,m+1+1,m+1+1,m—1) are degenerate, where | = —m, —m+

1,...,m — 1,m. The effective Hamiltonian reads
gi = —€; (827)
iy =t/ (m—1+1)(m+1+41). (928)
Similar to case (a), Cy = —1.

At Rs = —(2l 4+ 1)g, the four states, |m —Il+1,m+I+1,m+Il+1,m—=0,m—I,m+I+2m+Il+1,m—1),
lm—Ii,m+1l+1,m+1+2m-10), and l/m—I,m+1l+1,m+I1+1,m—1+1) are degenerate, where | = —m —
1,—m,...,m — 1, m. The effective Hamiltonian reads

'E,L'j th]\/(m—l+1)(m+l+2) (830)

Similar to case (a), Co = 1.

For example, Fig. S1(d) illustrates the effective Hamiltonian for N = 3 and R5; = g. The onsite energy different
balances off the repulsive energy for the sites with two particles. Thus, all the four states has the same energy and as
the coupling R1, Rs, R3, R4 approaches zero, the four states becomes the eigenstates and four-fold degeneracy emerges.

EXPRESSION FOR cyn
At the origin, |N,0,0,0), |0,N,0,0), |0,0,N,0), |0,0,0, N) are the four degenerate many-body ground states.
Treating the |R| as a small parameter, the lowest order coupling reads
TG (N —4,i,0,0|K|N —i—1,i+1,0,0)
TL5 (V= 4,3,0,0101N = 4,4,0,0) — (N,0,0,0[01N,0,0,0))

(N,0,0,0|Hel0, N, 0,0) = (S31)



Other terms can be written similarly. Comparing with the expression in the main text, we have

_ I VN -+ (32)
CN = — .
L5 [V = )2 42 = N?]

TOPOLOGICAL INVARIANTS

The Wilson line WU(QZS) is defined by sz(¢) = <\IJZ(W,(Z§)|W|\I’](O,¢)>, where |\I/i:1,2(0,¢)> and |\Ifi:172(ﬂ',¢))> are
the lowest two eigenstate states at the north and south poles, respectively, ¢ € [0,2) is the azimuthal angle, and
W= HQ; P, P, = Z?Zl |, (0k, &) (V;(0k, @)| is the projection operator in the kth step if we divide the longitude to
N steps. Physically, W;;(¢) characterizes the probability of occupying either eigenstate at the south pole if the initial
state is an arbitrary superposition of the eigenstate at the north pole after an adiabatic evolution along the longitude.
W, (o) is an orthogonal matrix and can be made real after an appropriate unitary transformation on H,g (rotate H.g

to be real). Thus, {(¢) = Wi1(7/2, ¢) + iW12(7/2, ¢) defines a winding number n,, = — 5= 0% () 04(0).

3D TOPOLOGICAL DEFECTS FOR EVEN NUMBER OF PARTICLES WITH REPULSIVE
INTERACTION

For later convenience, we introduce R4, Rp, ¢4, and ¢p, which are defined through Rje %4 = R, — iR, and
Rpe™ 1% = R.n, — iR.n,. For 4m particles with strong repulsive interaction, the ground state is |m, m, m,m). No
degeneracy is found.

For 4m + 2 particles with strong repulsive interaction, the ground state manifold has 6 states,
lm,m,m+1,m+1),jmm+1,mm+1),/mm+1l,m+1,m),|lm+1,mmm+1),jm+1,mm+1,m), and
|m 4+ 1,m + 1,m, m). The Hamiltonian reads

0 0 —e95(m+ )R —e"(m+1)Rp 0 0
0 0 e?4(m+1)Ry  —e®4(m+1)Ry 0 0
—e"B(m+1)Rp e ®A(m+1)Ra 2R5 0 —eA(m+1)Rs —e2(m+ 1)Rp
—e”®B(m+1)Rp —e~ 4 (m +1)Ra 0 —2Rs e?4(m+1)Ras —e®2(m+1)Rp
0 0 —e @Aa(m+1)Ra e 4(m+1)Ra 0
0 —e @E(m+1)Rp —e 2(m+1)Rp 0

(S33)
Two of the states, i.e. (]0,0,1,1) —e™2*¢5(1,1,0,0))/v/2 and (]0,1,0,1) + e~2*%4 [1,0,1,0))/v/2, have zero energy.
Projecting out these two states, we write the effective Hamiltonian as a 4 by 4 matrix,

2Rs V2eT A (m +1)Ra  —V2e 2 (m +1)Rp 0
V2e?4(m 4 1)R4 0 0 —V/2e4(m 4+ 1)Ra
” i (S34)
—V2e2(m +1)Rp 0 0 —V/2e2(m +1)Rp
0 —V2e7®A(m +1)Rs —/2e78(m +1)Rp —2Rs
Rewriting the effective Hamiltonian using direct product of o and 7 matrices, we obtain
R5(1, +0.) + (R0, + Rhoy — Ry, + Rymy + 72 (Ry72 + Ry7y) + 7. (R 7w — R5Ty)) (S35)

where Ry = (m + 1)(Ry — R3)/v2, Ry = (m + 1)(Ry + R4)/v2 and Ry = (m + 1)(Ry + R3)/v?2, and R, =
(m +1)(Ry — R4)/v/2. Solving the effective Hamiltonian, the eigen energies reads

R3

TRy (S36)

m+1)2)2_4RgR2B+Rz+R2B+

R?
+V2(m+1) i\/((Ri+RQB)+ ( 2
Eigenenergies become degenerate in certain 3D continuous manifolds.
{Mi: Ry = 0} and {M): Rp = 0}, the second and the third states are degenerate, and the ground state (the
fourth state) is unique.
{Ms: R5 =0, R4 = Rp}, both the ground and excited states are doubly degenerate.



For M; and M/, we find that the berry phase v = (0, 2w, 27, 0) and {; = 0 for the lowest two states. For My, we
find that v = 7 for all eigenstates and (; = 0 for the lowest two states.

We also rewrite the manifolds in the main text using R4 and Rp and find that the two type of 3D manifolds
are switched with each other as the interaction strength changes from negative to positive. Furthermore, we have
numerically verified that these degenerate manifolds extend to the weakly interacting regime.

LINKING NUMBER

In the 3D subspace with finite ||, e.g., R # 0 and Ry = 0, M; and My are knotted nodal line and nodal ring.
Thus, a linking number can be defined as follows,

]_ —
L= 7% f{ TR X drs. (S37)
AT Sy Ims [y — o2

A straightforward calculation shows that L is always 1, which verifies that the two nodal surfaces are knotted in the
subspace.

EXPERIMENTAL SCHEMES FOR EXPLORING FEW-BODY PHYSICS

There are a number of schemes to experimentally explore few-body physics related to the discussions in the main
text, including optical superlattice, mesoscopic traps, optical tweezers, ion traps, and superconducting circuits.

As shown in Fig. S2(A), a 2D optical superlattice is formed by a short and long lattice with wavelengths A\, =
2)s [2, 3]. Such superlattice divides the system into many plaquettes. When the energy barrier between different
plaquettes is large enough, plaquettes are isolated from each other. Each contains a few particles, and can be dressed
and probed individually. In particular, high resolution in-situ images allow experimentalists to measure precisely the
particle number per plaquette. Optical superlattices have allowed physicists to explore many interesting few-body
phenomena in two sites or four sites.

To induce complex tunnelings among the four sites, either Raman dressing or shaking can be used. In the former
approach, a field gradient can be applied in the diagonal direction to quench the bare tunnelings along both x and y
directions [2, 3]. Then a pair of Raman laser induces a complex laser assisted tunneling. In fact, it is not necessary
to individually control the phase of each tunneling. The key requirement is that the total effective magnetic flux per
plaquette is , i.e., a particle accumulates a m phase after finishing a closed loop composed of all four sites. Another
approach is shaking the lattice [4, 5]. Theoretically, this is the same as the Raman dressed lattice. In practice, the
advantage is that, no extra lasers are required. The onsite energies can be tuned by the two-photon detuning or the
shaking frequency. An additional 1D optical lattice aligned in the diagonal direction can provide extra controls of
the onsite energy. Using typical experimental parameters for Rb with scattering length ~ 5nm and laser wavelength
767nm, we find that, interaction strength ¢ in such lattice can reach 100Hz. For other atoms, Feschbach resonance
could further enhance g. g is the characteristic energy scale of topological defects discussed here, for instance, the
separation between different Yang monopoles in the parameter space and the energy gap in the effective models. With
such g, topological defects can be easily resolved in current experiments.

One could also use four mesoscopic traps [6, 7], or optical tweezers to realize a four-site system that is equivalent to
a single plaquette, as shown in Fig. S2(B). Two optical tweezers have been recently used to produce entangled pairs
of atoms [8]. For instance, bringing four tweezers together and engineering the tunnelings between tweezers using
external lasers, a single four-site model could be realized. Alternatively, one could stick to a single tweezer, and use
four internal states of atoms. Theoretically, this would be equivalent to the NIST experiment. The advantage here is
that, due to the strong confinement in an optical tweezer, the interactions could be much stronger. For instance, the
typical confining potential of a single optical tweezer is 200kHz. For Rb with scattering length as = 5nm and C's with
scattering length as; = 91nm, such confinement corresponds to an interaction strength 1kHz and 24kHz, respectively.
Thus, it will be much easier to explore interaction induced topological defects in optical tweezers.

Other quantum systems other than cold atoms can also be used to explore topological defects discussed in the main
text. For instance, two nearby ion trap, each of which hosts a spin-1/2, can be used to realize the model in Eq.(7) of
the main text, as shown in Fig. (S2.C). Here, (b, ¢) and (d, e) represent the magnetic field acting on the first and the
second spin-1/2, which is denoted by & and 7, respectively, in the  — y plane. ac,7, is simply the Ising interaction.
Similarly, two superconducting circuits may be used, as each circuit can be viewed as a spin-1/2 [9, 10]. Therefore,
our theoretical results can also be generalized to superconducting circuits.
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FIG. S2. (Color online) (A) Red spheres represent lattice sites of an optical superlattice and blue curves represent lattice
potentials. Black spheres represent atoms. Orange dashed lines represent an additional lattice potential that shifts the onsite
energies of two sites in each plaquette. (B) A schematic of the tunnelings and onsite energy in four mesoscopic traps, optical
tweezers, or each plaquette of an optical superlattice. (C) Our results also apply to two ion traps, each of which hosts a spin-1/2
(black arrows).

GENERIC INTERACTION

A generic interaction ), gin? + Do 25 9ijin leads to corrections to the effective Hamiltonian discussed in the main
text. As interactions transform to the onsite energy in the effective Hamiltonians constructed by four Fock states in
Eq. (1) and Eq. (7) of the main text, nonuniform g; and nonlocal g;»; (or equivalently, the inter-spin interaction in
the spin model) only lead to corrections in the diagonal terms. Most generically, the corrections can be written as

Aéff =), 0;H], where

)_‘L'i
I
(-
Q>
R
Q>
s

=1
HYy = alay + abas — abas — alaa, (S38)
HYy = alay —abas — alas + alas,
H} = alay —abas + abas — alay.

and d; corresponds to the strength of each type of perturbation.

0; depend on g; and g;;. For instance, the effective Hamiltonian near the origin of the parameter space for odd
number of particles reads

—c1Rs + 01 + 62 + 93 + 04 —C2 (R1 — ZRQ) —C2 (R3 — ZR4) 0
—C2 (R1 - ’LRQ) 61R5 + (51 + (52 - (53 — (54 0 —C2 (R3 — ZR4)
—Co (Rg — ZR4) 0 c1Rs + 61 — 09 — 03 + 04 Co (R1 — ’LRQ)
0 —Co (Rg —iRy) Co (R1 - ’iRg) —Cc1R5 + 01 — 99 + 93 — 4

(S39)



where ¢; = €;/¢; and ¢ = tNij/tij [rewrite of Eq. (5) in the main text]. For three particles, ¢; = —1, ¢o = 1, and
0 = i (391 + 392 + 393 + 394 + 2912 + 2913 + 2914 + 2923 + 2924 + 2g34) (S40)
02 = i (=91 — g2 + g3 + ga — 2912 + 2934) (541)
03 = i (=91 + 92 + g3 — 9a — 2914 + 2923) (542)
04 = i (=91 + 92 — g3 + ga — 2913 + 2g24) - (543)

For systems with equal intraspin interaction and no interspin interaction, i.e., g; = g, and g;; = 0, we obtain d; = 3¢
and 0y = 63 = 64 = 0. The Hamiltonian reduces to the unperturbed one.

For generic cases where §; # 0, these four corrections H/ can be classified into two categories.

Category 1: Hj and H) respect time reversal symmetry of the effective Hamiltonian. Hj only shifts the entire
energy spectrum and does not change the topological defects. H} only shifts the position of the topological defects
as a finite d3 simply changes the value of Ry to R5-d3. Therefore, the shape of topological defects and other results
in the main text remain unchanged.

Category 2: H) and H) break the time reversal symmetry and new topological defects arise.

When only H) exists, i.e., 62 # 0,04 = 0, the energy spectrum reads

Eepp = i\/iz\/(Sg (R? + R3+ R?) + R? + R2 + R3 + R? + 63 + R (S44)

The two degenerate manifolds are obtained as follows.

1.M3, the first (third) and the second (fourth) states become degenerate when Rs = Ry = Ry = 0.

2.Ma, the second and the third states become degenerate when RZ + R? + R% = 63 and Rz = Ry = 0.

Apparently, M is an infinite 2D topological defect. In contrast, Ms becomes a finite 2D sphere, unlike My
discussed in the main text, which extends to infinity. Thus, a finite do breaks the four-fold degeneracy at the original
Yang monopole but retains the degeneracy between the second and the third states on a 2D sphere, M.

Likewise, when only H) exists, i.e., 4 # 0,02 = 0, we also obtain two degenerate manifolds,

1.My, the first (third) and the second (fourth) state become degenerate when Rs = Rz = Ry = 0.

2.Ma, the second and the third states become degenerate when RZ + R% + R? = 67 and Ry = Ry = 0.

Again, M, is an infinite 2D topological defect, and M is a finite 2D sphere.

When both Hj and Hj exit, i.e., 3 # 0 and 4 # 0, M3 can be written as,

BORAR
of (67 -03)
BORAR
03 (65 —0f)
For generic d; # 0 and 64 # 0, Egs. (S45) and (S46) describe an ellipsoid. It is clear that, when do = 0 or 64 = 0,
Eqgs. (S45) and (S46) reduce to the previous results. When |d3] = [d4], M2 becomes a line segment connecting
(0,0,0,0,—42) and (0,0,0,0, d3), which signifies the transition from one ellipsoid in Eq.(545) to the other in Eq.(S46).

In any case, if a 4D sphere encloses My, C5 remains unchanged. The reason is that, the second Chern number, as
a topological invariant, is stable against small perturbations. Unless the perturbation is strong enough to close the
energy gap between the second and the third energy eigenstates, Co remains the same. Thus, when the amplitudes of
perturbations are much smaller than parameters of the single-particle Hamiltonian, for instance, the distance to the
origin of the five-dimensional parameter space, R, results of Cs in the main text remain unchanged.

We have also generalized the above results to the effective Hamiltonian for 3D continuous topological defects, i.e.,
the effective Hamiltonian in Eq.(7) of the main text. For two particles, if either d5 and &4 is zero, M is defined as
Ry = Ry = R5 = 0. If both é and d4 are finite, M7 does not exist. In contrast, My always exists. For finite d, and
84, My is shifted to Rs = 0 and R? + R} + 67 = R% + R + 63. Thus, small nonuniform g; and nonlocal interactions
gi=; only lead to perturbative changes to the topological defects.

2] <[4 (545)

2] > |4 (546)
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