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Non-Hermitian Thouless pumping: Interplay between topological charge pumping
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Motivated by experimental realizations of the lattice models with directional tunneling and the generalized
bulk-edge correspondence brought by a similarity transformation, we study the topological charge pumping
using the Rice-Mele (RM) model with directional tunneling (also termed as the non-Hermitian RM model). In
momentum space, through a similaritylike transformation, we map the non-Hermitian RM model to a Hermitian
one. Under the biorthogonal basis, the pumping is dictated by a Chern number of the Hermitian RM model.
This can be verified by experiments where both the non-Hermitian RM model and its Hermitian conjugation are
realized. Under the right-right vector basis, which is relevant to experiments where only the non-Hermitian one is
required, we find that the charge pumping contains a dynamical and a topological part. To reveal the topological
contribution, an experimental scheme of canceling the dynamical term is proposed.
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I. INTRODUCTION

Topological Thouless pumping has been both predicted
and observed across a range of experimental settings involving
fermions and bosons, including ultracold atoms [1–3] and
photonics [4–6]. The charge pumped in a cycle is quantized
and characterized by a Chern number [7–13]. The Rice-Mele
(RM) model, a paradigm to study Thouless pumping [14–25],
has been implemented in a variety of systems, including cold
atoms [16,26,27], optics [28–31], and superconducting cir-
cuits [32].

Owing to theoretical and experimental advances in non-
Hermitian physics [33–63], non-Hermitian charge pumping
has been extensively explored [64–70]. Many unexpected
transport effects have been unraveled in non-Hermitian sys-
tems, such as spontaneous topological pumping and fast
Thouless pumping [68,69,71]. Despite these advancements,
several fundamental questions remain open. For instance, how
do the topological charge pumping and directional tunnel-
ing interplay? What is the difference between wave-packet
displacements in a non-Hermitian system, where one has to
distinguish between the left and right vectors? Furthermore,
how can the topological contribution be effectively isolated
from the total displacement in experimental measurements?

To answer these questions, in this paper, we use the
non-Hermitian RM model [illustrated in Fig. 1(a)] to study
the interplay between the topological charge pumping and
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directional tunneling. Our main conclusions are summarized
as follows. (1) We first show that, in momentum space, the
non-Hermitian and Hermitian RM models are connected by
a class of similaritylike transformation, which contrasts to
the similarity transformation in real space. This similarity-
like transformation unravels the relation between the Chern
numbers of the Hermitian and non-Hermitian RM models. (2)
Under the biorthogonal basis, the topological charge pumping
of the non-Hermitian RM model follows the Chern number
of the Hermitian bulk Hamiltonian, which is proved by the
similarity transformation. (3) Under the right-right vector ba-
sis, we show that the displacement is contributed by both a
dynamical and a topological part, and we provide a method
to extract the topological part from the total displacement.
Importantly, the topological part follows the Chern number of
the non-Hermitian RM model. In Fig. 1(b), we schematically
illustrate the charge pumping when the initial state is localized
in the lower (blue arrow) and upper (red arrow) band, respec-
tively.

II. MODEL

We consider the RM model with directional intracell hop-
ping strength as shown in Fig. 1(a), and write the Hamiltonian
as [72,73]

Ĥ (t ) =
N∑
n

[(
J1(t ) + γ

2

)
a†

nbn +
(

J1(t ) − γ

2

)
b†

nan

]

+ J2

N∑
n

(a†
n+1bn + H.c.) + �(t )

N∑
n

(a†
nan − b†

nbn),

(1)
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FIG. 1. (a) Schematics of the Rice-Mele model with directional
tunneling. The dotted box indicates a unit cell composed of sublat-
tices A and B. (b) Illustration of the wave-packet displacement in a
cycle under biorthogonal and right-right basis. Blue and red solid cir-
cles denote sublattices A and B, respectively. The gray wave packet
represents the initial state. Blue and red wave packets represent the
final state when the initial state is localized in the lower and upper
band.

where J1(t ) ± γ /2 and J2 denote the time-dependent intra-
and intercell hopping strength, respectively; γ is the strength
imbalance of the directional tunneling. �(t ) is the time-
dependent staggered on-site potential. a†

n and b†
n (an and bn)

are creation (annihilation) operators on sublattices A and B
of unit cell n, respectively. When γ is zero, Eq. (1) reduces
to the Hermitian RM model, for which the topological charge
pumping is governed by the Chern number [14–25].

To achieve topological charge pumping, the Hamiltonian
should be periodic in the parameter space. In this work,
we consider the following case: J1(t ) = J0 + E0 cos(ωt ),
J2 = E0, and �(t ) = E0 sin(ωt ), where J0 is the average in-
tracell hopping value and ω is the modulation frequency; here,
J0, E0 are the characteristic energies. To meet the condition of
adiabaticity, we require ω � J0, E0. Nevertheless, ω can be
comparable to or even larger than γ .

III. SIMILARITYLIKE TRANSFORMATION

Under periodic boundary conditions, we write the bare
non-Hermitian Rice-Mele in momentum space as

Ĥ (k, t ) = dxσ̂x +
(

dy + i
γ

2

)
σ̂y + dzσ̂z, (2)

where dx = J1(t ) + J2 cos(k), dy = J2 sin(k), dz = �(t ), and
σ̂x,y,z denote the Pauli matrices. Throughout this work, we set
the lattice constant to unity. In real space with open boundary
conditions (OBCs), the non-Hermitian Hamiltonian in Eq. (1)
maps to a Hermitian one by a similarity transformation [74].
However, in general, such a mapping cannot be established
in momentum space. As one of the central results of this
work, we find that the non-Hermitian Hamiltonian in Eq. (2)
nevertheless maps to a Hermitian one by a similaritylike trans-
formation

α(k)T̂ −1Ĥ (k, t )T̂ = Ĥ(k, t ). (3)

By similaritylike, we mean that besides the similarity transfor-
mation T̂ , there is an extra factor α(k) that is either complex
or real [see Appendix A for the explicit expression of α(k) and
T̂ ].

We would like to make two comments before further
proceeding: (1) Ĥ (k, t ) in Eq. (3) is obtained by Fourier
transforming the non-Hermitian Hamiltonian in Eq. (1), while

FIG. 2. (a) The Chern number of the non-Hermitian Rice-Mele
model, and the charge pumping in a cycle with γ = 0.4E0 and
ω = 0.3E0. The dashed black line is the analytical continuation of
the solid black line. Inset: The blue dashed and purple solid lines
denote the integral of �T

tk (k, t ) − �T
kt (k, t ) and difference of the

Chern numbers of the Hermitian and non-Hermitian Hamiltonians,
respectively. (b) The Chern number (lines) and the displacement
(symbols) defined under the biorthogonal basis as a function of J0.
Here, ω = 0.01E0. The horizontal dashed-dotted line is a guide for
the eye.

Ĥ(k, t ) denotes the Fourier transformation of the correspond-
ing Hermitian Hamiltonian Ĥ(t ) in real space. These two
real-space Hamiltonians are linked by a similarity transfor-
mation [74]. (2) The similaritylike transformation applies to
the case where the energy spectrum is either real or com-
plex, whereas the similarity transform only applies to the real
energy spectrum. If the spectrum is real, the similaritylike
transformation reduces to the similarity transformation, i.e.,
α(k) = 1. One of the applications of the similaritylike trans-
formation is that it connects the topological numbers of the
bare non-Hermitian Hamiltonian Ĥ (k, t ) and the transformed
Hermitian one Ĥ(k, t ). In general, we define the Chern num-
ber as

C = 1

2π

∫ 2π/ω

0
dt

∫ π

−π

dk�(k, t ), (4)

where � denotes the Berry curvature.
First, for non-Hermitian RM model, the Berry curvature

under the biorthogonal basis is defined as

�(k, t ) = iL〈∂t u(k, t )|∂ku(k, t )〉R

− iL〈∂ku(k, t )|∂t u(k, t )〉R; (5)

here, |u(k)〉R and |u(k)〉L are the eigenstates of Ĥ (k, t ) and
Ĥ†(k, t ), respectively. Based on this definition, we obtain the
Chern number [red dashed line in Fig. 2(a)]. It has been
pointed out that the Chern number is not quantized near
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J0 ∼ 2E0 and the topological transition indicated by C also
does not follow the bulk-edge correspondence [75].

Second, by the similaritylike transformation in Eq. (3), we
obtain the Hamiltonian of the RM model (see Appendix A),

Ĥ(k, t ) =
⎛
⎝ �(t )

√
J2

1 (t ) − γ 2

4 + J2e−ik√
J2

1 (t ) − γ 2

4 + J2eik −�(t )

⎞
⎠.

(6)

The corresponding Berry curvature is defined by

�̃(k, t ) = i〈∂t ũ(k, t )|∂kũ(k, t )〉 − i〈∂kũ(k, t )|∂t ũ(k, t )〉, (7)

where |ũ(k, t )〉 is the eigenstate of Ĥ(k, t ). The correspond-
ing Chern number is showcased by the black solid line in
Fig. 2(a). Note that the similarity transformation is inappli-
cable in the interval J0 � E0 + γ /2, and the Chern number is
not well defined. Therefore, the Chern number in this interval
is an extension of the well-defined Chern number (black solid
line), as shown by the black dashed line in Fig. 2(a). It is clear
that the Chern number becomes quantized, and the bulk-edge
correspondence is restored [75].

Because the two momentum-space Hamiltonians are con-
nected via similaritylike transformations, we expect that the
Chern numbers are related to each other. To see this, we write
the relation between the eigenstates of Ĥ (k, t ) and Ĥ(k, t )
as |ũ(k, t )〉 = T̂ −1|u(k, t )〉R and 〈ũ(k, t )| = L〈u(k, t )|T̂ . Upon
substituting this relation into Eq. (7), we find the relation
between �(k, t ) and �̃(k, t ),

�̃(k, t ) = �(k, t ) + [
�T

tk (k, t ) − �T
kt (k, t )

]
, (8)

where �T
tk (k, t ) originates from the similaritylike transforma-

tion, and reads

�T
tk (k, t ) = iL〈∂t u(k, t )|T̂ (∂kT̂ −1)|u(k, t )〉R

+ iL〈u(k, t )|(∂t T̂ )(∂kT̂ −1)|u(k, t )〉R

+ iL〈u(k, t )|(∂t T̂ )T̂ −1|∂ku(k, t )〉R. (9)

Using this extra “Berry curvature,” we obtain a corresponding
topological number defined in Eq. (4). According to Eq. (8),
the difference of the Chern numbers of Ĥ(k, t ) and Ĥ (k, t )
is determined by this extra Berry curvature, as illustrated in
Fig. 2. Here, the red dashed and black solid lines denote the
Chern numbers of Ĥ (k, t ) and H̃ (k, t ), respectively, and the
difference of them is shown by the blue dotted line in the inset,
which equals the integral of the second term in Eq. (8) (the
solid purple line).

IV. CHARGE PUMPING UNDER BIORTHOGONAL BASIS

In order to investigate the physical consequence of topol-
ogy, we study the charge pumping, i.e., the center-of-mass
displacement of a wave packet in a cycle. To observe quan-
tized pumping, we need to evenly occupy the energy band,
which could be achieved by choosing the Wannier state as the
initial state. For the non-Hermitian RM model in Eq. (1), the
right Wannier state centered at the jth unit cell reads

|w j〉R = 1

N

Nδk∑
k=δk

N∑
m=1

ei(m− j)k |m〉 ⊗ |u(k)〉R, (10)

where δk = 2π/N and |u(k)〉R is the right eigenstate of
Ĥ (k, t ). The left Wannier state |w j〉L is similarly defined
using |u(k)〉L. With the left and right Wannier states, we have
two options for defining the displacement. First, using the
biorthogonal basis, we define the position of the Wannier
center as

xLR(t ) = L〈w j |Û −1(t )x̂Û (t )|w j〉R, (11)

where Û (t ) = T e−i
∫ t

0 Ĥ (τ )dτ is the evolution operator with T
denoting time order.

After a cycle, the displacement of the Wannier center is
δxLR = xLR(T ) − xLR(0). Figure 2 shows the displacement
(red stars) driven by the non-Hermitian Hamiltonian Ĥ with
γ = 0.4E0. We emphasize that the quantized displacements
were obtained only in the interval J0 > E0 + γ /2. When J0 �
E0 + γ /2, the energy spectrum under OBC becomes com-
plex (see Appendix B), indicating the presence of exceptional
points (EPs). In an evolution cycle, the system passes through
the EPs, namely J0 + E0 cos(ωt ) = ±γ /2, four times. When
EPs appear (denoted by the gray area in Fig. 2), the quantized
charge pumping disappears, even though the Chern number
might still appear to be quantized.

Note that the evolution operator of the non-Hermitian
model maps to that of the Hermitian one by a similar-
ity transformation as Û (t ) = S(t )Ũ (t )S−1(0), where Ũ (t ) =
T e−i

∫ t
0 Ĥ(τ )dτ and Ŝ is the similarity-transformation matrix

[74]. Thus, we rewrite the time-dependent Wannier center
position as

xLR(t ) = L〈w j |S(0)Ũ −1(t )x̂Ũ (t )S−1(0)|w j〉R. (12)

Then, we interpret xLR(t ) as the position expectation value
under S−1(0)|w j〉R and L〈w j |S(0). Our results show that it
is approximately identical to the displacement of the Wan-
nier center under the driving of the corresponding Hermitian
Hamiltonian,

x̃(t ) = 〈w̃ j |Ũ −1(t )x̂Ũ (t )|w̃ j〉, (13)

where |w̃ j〉 is the Wannier state of Ĥ(t ). By comparing
Eqs. (12) and (13), we conclude that |w̃ j〉 ≈ S−1|w j (m)〉R,
which was numerically verified (see Appendix C). Figure 2(a)
shows the displacement in a cycle. The red stars depict the
displacement driven by the non-Hermitian Hamiltonian Ĥ (t ),
while the black circles are for the displacement driven by
the Hermitian Hamiltonian Ŝ−1Ĥ (t )Ŝ. These two curves are
nearly identical when J1(t ) > E0 + γ /2. This alignment im-
plies that both scenarios follow the same Chern number (black
line) of the Hermitian Hamiltonian.

Figure 2(b) shows the displacement in a cycle (lines with
symbols) and the Chern number (lines) for different γ with
ω = 0.01E0. We observe that the topological phase transition
happens at J0 = E0 +

√
J2

2 + γ 2/4, indicated by the sudden
change of the Chern number. Because of the nonadiabatic
nature of the charge pumping, the displacement is a smooth
function. At the phase transition point, the energy bands close,
breaking adiabaticity. However, adiabaticity is restored away
from this point as the energy gap reopens. Notably, the energy
gap varies symmetrically around the transition point. This
phenomenon leads to a symmetric deviation of the displace-
ment on both sides. Nevertheless, we find that the transition
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FIG. 3. (a) The displacement of the Wannier center in a cycle.
The solid and dashed lines are for the initial state localized in the
lower and upper bands, respectively. (b) The wave packet of the lower
band driven by the non-Hermitian Hamiltonian after a cycle. The red
(right half) and blue (left half) histograms are evolved from the initial
wave packet of the right and left vectors, respectively. (c) The wave
packet of the lower band driven by the Hermitian Hamiltonian. The
black (central peak) and the red histogram are for the initial- and
final-state wave packets, respectively. Here, γ = 0.4E0, J0 = 1.5E0,
and ω = 0.3E0.

points locate exactly at the displacement xLR = 0.5, which
suggests that δxLR(T ) follows the Chern number of the Her-
mitian Hamiltonian.

To measure the charge pumping, we require two experi-
ments, in which the Hamiltonians are Hermitian conjugates
to each other [76,77]. Figure 3 shows the evolution of the
wave packet and the displacement of the Wannier center over
time. In Fig. 3(a), the solid (dashed) line corresponds to an
initial state which is localized in the lower (upper) band.
These two states have opposite directional topological charge
pumping. We choose γ = 0.4E0, t0 = 1.5E0, and ω = 0.3E0,
and consider a chain of 100 unit cells. The initial state locates
at the center, as depicted by the black histogram in Fig. 3(b).
The left and right Wannier states are driven by Ĥ†(t ) and Ĥ (t ),
respectively, resulting in blue and red wave packets after a
cycle. The wave packet driven by the Hermitian Hamiltonian
Ŝ−1Ĥ (t )Ŝ is shown in Fig. 3(c). Although Figs. 3(b) and 3(c)
showcase two distinct final wave packets, the displacements
in a cycle are identical.

V. CHARGE PUMPING UNDER RIGHT-RIGHT BASIS

We now define the charge pumping displacement using the
right-right vector basis, which can be directly obtained in a
single experimental measurement. In this case, the expectation
value of the Wannier center position is given by

xRR(t ) = R〈w j |Û †(t )x̂Û (t )|w j〉R, (14)

where Û (t ) denotes the time-evolution operator and |w j〉R

is the initial Wannier state in the right vector basis. Figure 4
illustrates the characteristics of charge pumping defined in the
right-right vector. As shown in Figs. 4(a) and 4(b), the wave
packet exhibits directional motion, regardless of whether the
initial state lies in the upper or lower band. This indicates the

FIG. 4. The charge pumping defined under right-right vectors.
(a) The final Wannier wave packet after a cycle. (b) The total
displacement as a function of time. (c) The topological part of the dis-
placement extracted from the total displacement. Here, γ = 0.04E0,
J0 = 1E0, and ω = 0.1E0.

displacement of the Wannier center contains both dynamical
and topological contributions. A natural question then arises:
How can one isolate the topological component from the
total displacement? The key observation is that the dynamical
contributions for the upper and lower bands are identical,
while the topological components are equal in magnitude but
opposite in sign. Therefore, the average displacement of the
two bands reflects the dynamical part, whereas subtracting
this average from the displacement of each band yields the
topological contribution. As shown in Fig. 4(c), the extracted
topological displacement is quantized over one pumping cy-
cle. A similar method has been adopted in the investigation
of the momentum distribution in spin-orbit coupled quantum
gases [78,79].

To establish the correspondence between displacement
and the Chern number, we compute the Chern number un-
der the right-right vector basis by replacing L〈u(k, t )| with
R〈u(k, t )| in Eq. (5). In contrast to the biorthogonal basis,
a well-defined physical Chern number does not exist in the
intervals J0 ∈ [−E0 + J2 − γ /2,−E0 + J2 + γ /2] and J0 ∈
[E0 + J2 − γ /2, E0 + J2 + γ /2]. This behavior is consistent
with the fact that, outside these intervals, the energy of the
states at k = 0 and k = π remains real even under periodic
boundary conditions (PBCs), whereas within these intervals
the energy becomes complex. The emergence of complex en-
ergy indicates the presence of exceptional points (EPs) in the
PBC spectrum, and such EPs destroy the quantization of the
Chern number. As the non-Hermiticity parameter γ increases,
the range supporting quantized topological charge pumping
becomes narrower, consistent with the shrinking region of the
well-defined Chern number. These results confirm that the
topological charge pumping under the right-right vector basis
follows the Chern number of the non-Hermitian Hamiltonian
(see Appendix C for details).

VI. CONCLUSIONS AND OUTLOOK

We studied the interplay between topological charge pump-
ing and directional tunneling. Using the RM model, we

053308-4



NON-HERMITIAN THOULESS PUMPING: INTERPLAY … PHYSICAL REVIEW A 111, 053308 (2025)

showed that in momentum space, the non-Hermitian and
Hermitian models are connected via a similaritylike transfor-
mation. Under the biorthogonal basis, the charge pumping
of the non-Hermitian RM model follows the Chern num-
ber of the corresponding Hermitian bulk Hamiltonian. Under
the right-right vector basis, we demonstrated that the charge
pumping consists of both dynamical and topological com-
ponents, with the latter determined by the Chern number of
the non-Hermitian Hamiltonian. Our results are applicable to
various experimental platforms. We believe that, based on
our approach, topological charge pumping under both the
biorthogonal and right-right bases can be measured in future
experiments. Furthermore, we find that charge pumping in
the biorthogonal basis exhibits a pronounced sensitivity to the
OBC spectrum, and that the presence of exceptional points
(EPs) in specific states of the PBC spectrum leads to a break-
down of the quantized Chern number. These intriguing effects
necessitate further in-depth investigations.
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APPENDIX A: SIMILARITYLIKE TRANSFORMATION

In this Appendix, we use the non-Hermitian Rice-Mele
(RM) model to demonstrate the similaritylike transformation.
Under the periodic boundary condition, the non-Hermitian
RM model in momentum space is obtained by the Fourier
transformation of Eq. (1),

Ĥ (k, t ) =
(

�(t ) J1(t ) + γ

2 + J2e−ik

J1(t ) − γ

2 + J2eik −�(t )

)
, (A1)

where J1(t ) ± γ /2 and J2 denote the time-dependent intra-
and intercell hopping strengths, respectively; �(t ) is the time-
dependent staggered on-site potential. We propose that the
Hermitian and non-Hermitian Hamiltonian can be linked in
momentum space using a similaritylike transformation

α(k)T̂ −1Ĥ (k, t )T̂ = Ĥ(k, t ). (A2)

For the non-Hermitian RM model, the explicit expression of
the transformation matrix T̂ is

T̂ =
(

1 b
c d

)
, (A3)

where the matrix element reads and (A5)

b = − �(t )√[
J1(t ) − γ

2

][
J1(t ) + γ

2

] + J2eik
,

c = − �(t )

J1(t ) + γ

2 + J2e−ik
, (A4)

and

d =
4�2(t ) + d1

√
4J2

1 (t ) + 4J2
2 − γ 2 + 4�2(t ) + 8J1(t )J2 cos(k) + 4iγ J2 sin(k)

[2J1(t ) + γ + 2J2e−ik][
√

4J2
1 (t ) − γ 2 + 2eikJ2]

, (A5)

d1 =
√

4J2
1 (t ) + 4J2

2 − γ 2 + 4�2(t ) + 4J2 cos(k)
√

4J2
1 (t ) − γ 2. (A6)

The factor α(k) in Eq. (A2) reads

α(k) =

√
4J2

1 (t ) + 4J2
2 − γ 2 + 4�2(t ) + 4J2 cos(k)

√
4J2

1 (t ) − γ 2

√
4J2

1 (t ) + 4J2
2 − γ 2 + 4�2(t ) + 8J1(t )J2 cos(k) + 4iγ J2 sin(k)

. (A7)

After the similaritylike transformation, the RM model is
recast as a Hermitian form,

Ĥ(k, t ) =
⎛
⎝ �(t )

√
J2

1 (t ) − γ 2

4 + J2e−ik√
J2

1 (t ) − γ 2

4 + J2eik −�(t )

⎞
⎠,

(A8)

which is Eq. (6) in the main text.

APPENDIX B: EXCEPTIONAL POINTS
OF RICE-MELE MODEL

It is well known that in the Hermitian Rice-Mele model,
one key difference between the spectra under OBCs and PBCs
is the presence of edge states in the OBC case. When the
Chern number is nonzero, edge states appear under open
boundary conditions (OBCs), illustrating the bulk-edge cor-
respondence. But when non-Hermiticity is introduced (i.e.,
γ 
= 0), the situation changes significantly. First, we show
the spectrum of the RM model under OBCs with directional
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intracell hopping strength, as written in Eq. (1) of the main text, and demonstrate the exceptional points. The matrix form of the
RM model under OBCs is written as

Ĥ (t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�(t ) J1(t ) + γ /2 . . . 0
J1(t ) − γ /2 −�(t ) J2

J2 �(t ) J1(t ) + γ /2
... J1(t ) − γ /2 −�(t )

...
. . .

�(t ) J1(t ) + γ /2
0 . . . J1(t ) − γ /2 −�(t )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)

For this model, an exceptional point (EP) arises when J1(t ) =
J0 + E0 cos(ωt ) = ±γ /2. Here, we take γ = 0.4E0 as an ex-
ample to demonstrate the EPs in RM model. The energy
spectrum when J0 = 0.5E0 < E0 + γ /2 is shown in Figs. 5(a)

FIG. 5. Spectra of the non-Hermitian Rice-Mele model with γ =
0.4E0. (a), (c) The real and imaginary parts of energy spectra under
OBC when J0 = 0E0. The red dots mark the location of the EPs. (b),
(d) The real and imaginary parts of energy spectra under OBC when
J0 = 2.02E0. (e), (g) The real and imaginary parts of energy spectra
under PBC when J0 = 0E0. (f), (h) The real and imaginary parts of
energy spectra under PBC when J0 = 2.02E0. The red line in (e) and
(g) means the energy with momentum k = 0, and the blue line in
(e)–(h) means the energy with momentum k = π .

and 5(c). It is clear that in one cycle, the system experiences
EPs four times. At EPs, the energy spectrum becomes com-
plex and the real part of the energy spectrum is coalesced. The
exceptional points vanish when J0 > E0 + γ /2, as depicted
in Figs. 5(b) and 5(d). In this situation, the system no longer
encounters exceptional points in one pump cycle. As such, the
Thouless charge pumping is well behaved.

Under PBCs, most of the energy eigenvalues are complex,
except for two states with momentum k = 0 and k = π , cor-
responding respectively to the red line and the blue line in
Figs. 5(e)–5(h). The energies of these two states become com-
plex only when J0 ∈ [−E0 + J2 − γ /2,−E0 + J2 + γ /2] and
J0 ∈ [E0 + J2 − γ /2, E0 + J2 + γ /2]. In other words, each of
these two states experiences two EPs. Therefore, both spec-
tra under PBCs and OBCs experience EPs when J0 varies.
We return to the Chern number, which is defined from the
bulk Hamiltonian. Our results show that the Chern num-
ber is ill defined (i.e., nonquantized) when J0 ∈ [−E0 + J2 −
γ /2,−E0 + J2 + γ /2] and J0 ∈ [E0 + J2 − γ /2, E0 + J2 +
γ /2]. Outside these intervals, PT symmetry revives, and the
quantized Chern number becomes well defined, as illustrated
in Figs. 2(a) and 7.

APPENDIX C: WANNIER STATE AND CHARGE
PUMPING UNDER RIGHT-RIGHT BASIS

After the similarity transformation [74], the charge
pumping displacement xLR(t ) defined in Eq. (12) of the main
text is the position expectation value under S−1(0)|w j〉R

and L〈w j |S(0), which are driven by the real-space

FIG. 6. The wave packet of the initial Wannier state with γ =
0.1E0 and J0 = E0. (a) The red histogram depicts the right Wannier
state after similarity transformation. (b) The blue histogram depicts
the left Wannier state after similarity transformation. The black dots
represent the initial Wannier state of the Hermitian Hamiltonian.
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FIG. 7. The Chern number (lines) and the displacement (sym-
bols) in a cycle under right-right vectors as a function of J0; ω =
0.1E0. The insets are the schematics of the evolutionary path, where
the red dashed line is the gapless line of the spectrum.

Hermitian Hamiltonian. In Fig. 6, the initial wave packets
of S−1(0) |w j〉R and L〈w j |S(0) are illustrated by the red
and blue histograms, respectively. The initial Wannier state
of Hermitian Hamiltonian |w̃ j〉 is represented by the black
dots. Those initial states are all localized in the lower band.

By numerical comparison, we find that the wave packets
of S−1(0) |w j〉R [or L〈w j |S(0)] and |w̃ j〉 are approximately
identical in spatial distribution, which justifies the conclusion
that |w̃ j〉 ≈ S−1|w j (m)〉R in the main text.

To study the topological charge pumping under the right-
right basis, we show the displacement and Chern number with
different γ by solid lines and symbols in Fig. 7. In contrast to
the biorthogonal basis, a physical Chern number does not exist
in the intervals J0 ∈ [−E0 + J2 − γ /2,−E0 + J2 + γ /2] and
J0 ∈ [E0 + J2 − γ /2, E0 + J2 + γ /2], indicated by the blue
interval. This is because the evolution path crosses the gapless
line of the spectrum, as illustrated by the insets of Fig. 7. As γ

increases, the range of the quantized topological charge pump-
ing becomes narrower, which is consistent with the fact that
the region of the quantized Chern number becomes narrower
as well.

In the insets of Fig. 7, the evolutionary path and the gapless
line of the spectrum are illustrated by the black solid line
and the red dashed line. When the closed evolutionary path
contains the entire gapless range, the Chern number is equal to
1. The gapless range of the RM model can be simply obtained
from the Hamiltonian Ĥ (k). The eigenenergy of the Hamilto-
nian is E± = ±√

d2
x + (dy + iγ /2)2 + d2

z . When E± = 0, the
energy band is closed, and we find the gapless condition is
J1(t ) = ±J2 ±

√
γ 2/4 − �2(t ).
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