
Measurements of the Mixed Chern Numbers

Quantum Hall Effect for Few Strongly Interacting Bosons at Finite Temperatures 
Tsz Chun Lau,1 Xiaoyi Yang,2 Ren Zhang,2, 3 Yangqian Yan1, 4

1 Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, China

2 MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices,

 School of Physics, Xi'an Jiaotong University, Xi'an 710049, China

3 Hefei National Laboratory, Hefei, 230088, China

4 The Chinese University of Hong Kong Shenzhen Research Institute, 518057 Shenzhen, China

Abstract

Although the Chern number is a well-established topological invariant at zero temperature, its generalization to 

finite temperatures remains an active area of research. This work investigates the finite-temperature extension of the 

Chern number for few strongly interacting bosons. We demonstrate that the Chern number of the one-particle 

reduced density matrix is equivalent to the mixed Chern number, defined as the thermal average of Chern numbers 

over all eigenstates. This mixed Chern number corresponds to the visibility in quantum optics and is experimentally 

accessible. We propose three experimental schemes for Bose gases: two utilize time-reversal symmetry to directly 

extract monopole charges by measuring visibility while canceling dynamical phases, and one enables direct 

measurement of the mixed Chern number in the non-adiabatic regime. Our findings provide a practical framework 

for experimental validation of topological phenomena in finite-temperature quantum systems.

Monopoles and Mixed Chern Numbers

We consider N bosons in two hyperfine states coupled with lasers (or N bosons in two lattice sites) with 

strong inter hyperfine interaction (or strong on-site interaction).

By the spatial single-mode approximation, the Hamiltonian reads
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Along the z-direction, the 

spin  states 

              ,where m = (2N↑ −

N)/2, are the eigenstates with

Em = −Bzm + γm2.

The Chern number of the i-th 

state is

Ci = sgn(γ) (N − 2i).

To account for the finite-

temperature effect, we define 

the mixed Chern number as

For N > 1 particles, the 

mixed Chern numbers 

and visibility are related 

by the one-particle 

reduced density matrix 

(ORD) 

.

New definition:

CORD = tr(ρ(1)σz).

Two definitions of Chern 

numbers are equivalent,

CORD = Cmixed.

The mixed geometric 

phase for the one-particle 

density matrix is defined 

by

When Ω = π, we have

Sjöqvist et al. defined the mixed geometric phase [3]. For a spin-1/2 system, it is defined by

ϕg = nϕ: geometric phase

n: number of monopole enclosed

v: visibility  γmixed: mixed geometric phase  Ω: solid angle subtended

For a thermal state and Ω = π, the visibility is v = tanh(B/2kBT ), which coincides with Cmixed.

After the time of flight, we measure 

P = Ψf Ψi
2 = cos2(nϕ).

By varying the angle ϕ, we can extract the monopole charge n.

We can also measure the Chern number of the ground state by integrating the linear response in the non-

adiabatic limit [4]. We evolve the ground state along a meridian on the sphere with θ(t) = πt/ttotal, ϕ(t) = 0. 

At each time step, we measure the Berry curvature 

Fθϕ =
Bsin(θ)ttotal

π
Jy

via tomography [5]. The Chern number can then be obtained by integrating the Berry curvature, 
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Due to finite-temperature effects, we are measuring the ensemble average of Jy  for a thermal state, so the 

measured value corresponds to the mixed Chern number Cmixed. This method does not require a strict 

adiabatic condition. 
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This quantization can be interpreted as the quantum Hall effect in the abstract parameter space for 

interacting bosons. By conceptualizing the quench velocity vθ as electric field, the generalized force  fϕ  as 

electric current, and the Berry curvature Fθϕ as Hall conductivity, we can draw parallels to the behavior 

observed in the quantum Hall effect [4]. 

It is important to note that the Berry curvature is directly related to Jy , which describes the exchange or 

flow of particles between the two modes of the Bose gas. When averaged over the sphere, the Chern 

number effectively quantifies the difference in occupation numbers between the two modes, analogous to 

the quantized Hall conductance in the quantum Hall effect.
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After Jordan–Schwinger map [1, 2], the whole system is mapped onto a system of spin-N/2 particles 

subjected to an effective magnetic field with effective interacting Hamiltonian
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Experimental Proposals

which is time-reversal symmetric, so that the dynamical phase can be canceled. We evolve the ground state 

along the evolution path as shown in above figure. We have

(a1) Bose gas in two lattice site, each site containing a double well with two hyperfine states. 

(a2) Two-component Bose gas in a double well with two hyperfine states. 

The effective magnetic fields in each site or well are oriented in opposite direction. The effective 

Hamiltonian reads

(N + 1)-fold degenerate

two-fold degenerate

monopole-stretching
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