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Methodology

We find an analytical solution of the homogeneous system case, which reads

where (if there is only one- or two-body loss)

One sees a non-analytical behavior at a ”critical time”:

Introduction

Results

The interplay between coherent evolution and dissipation gives rise to rich physical phenomena in driven-
dissipative open quantum many-body systems. Much attention has been devoted to understanding non-
equilibrium phases of different steady states. However, purely lossy open quantum many-body 
systems, such as ultracold atomic gases subject to one- or two-body losses, inevitably evolve towards 
the vacuum state, making steady-state analyses insufficient. For such systems, the transient dynamics 
preceding vacuum decay become the primary focus, demanding theoretical frameworks that can capture 
the full temporal evolution.

1. Model 
• We consider a spin-balanced Fermi gas under a general external potential. The momentum-space 

Hamiltonian reads

• We consider two possible channels for dissipation, i.e., one- and two-body losses

• The exact evolution of the system is described by the Lindblad master equation
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A particularly important example is dissipative fermionic superfluids [i.e., fermionic superfluids with 
particle losses due to inelastic collision], where inelastic scattering introduces complex dynamics that 
fundamentally differ from their closed-system counterparts. While the dynamics of elastic scattering 
length quenches in superfluids are well-understood, producing oscillating or exponentially decaying order 
parameters [subfigures (a,b,d) below], the effects of inelastic scattering have received limited theoretical 
attention. Previous studies using Anderson's pseudo-spin formalism on lattices [1-3], assume a pure 
superfluid without accounting for the normal component that emerges during dissipative evolution.
This gap motivates our investigation of homogeneous lossy fermionic superfluids in continuous space, 
where we discover a fundamentally new type of “dynamical phase transition”, where the superfluid 
closes its gap at a finite critical time [subfigures (c) below]. 
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2. Auxiliary Observable Variational Principle
• We find that the Lindblad equation can be reformulated as a variational principle, with action

• By the variation with respect to the density matrix and the auxiliary observable, one can recover the 
Lindblad equation and its adjoint equation

3. Generalized Time-Dependent Hartree-Fock-Bogoliubov Equation
• Under Hartree-Fock-Bogoliubov approximation (density matrix is an infinite-mode fermionic Gaussian, 

observable is a general quadratic observable), the resulting variational equation of motion is

• One observed that a “non-Hermitian Hartree-Fock” approximation is enough for the normal phase system that does not 
hold any pair coherence:

one-body density matrix Hartree-Fock-Bogoliubov Hamiltonian

“effective quantum jump”

4. Wigner Transform and Semi-classical Approximation
• We can rewrite the generalized time-dependent Hartree-Fock-Bogoliubov equation into phase space by 

the Wigner transform

• The Wigner transform turns all matrix multiplications into Moyal products. To systematically do a semi-
classical approximation, we expand all Moyal products up to the first order of the reduced Planck 
constant 

• The Poisson bracket 

5. Inelastic Quantum Boltzmann Equation for Bogoliubov Quasi-particles
• We find that under the semi-classical approximation, the time-dependent Hartree-Fock-Bogoliubov 

equation supports Bogoliubov quasi-particles with infinite lifetime, whose phase space distribution 
evolves under an inelastic quantum Boltzmann equation

• For the homogeneous system in the BCS limit, the equation can be explicitly written as

with

Quasi-particle distribution evolution Physical particle distribution evolution

two-body loss

one-body loss

Four stages of the dissipative evolution
(a) System in the ground state: there are no excitations, thus no quasi-particles
(b) Losses create quasi-particles (hole-excitation)
(c) Quasi-particle distribution coincides with which of physical particles
(d) The quasi-particle becomes the same as physical particles: superfluidity is completely diminished.

We calculate how the superfluid fraction and superfluid gap evolve for further verification:

It is observed that the superfluid fraction is discontinuous in the first-order time derivative, and the 
superfluid gap is smooth but non-analytical. 
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