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Abstract

Two-body loss of degenerate 
molecular Fermi gas

In 2019, experimentalists realized molecular  gases with 
temperatures  as low as , where  denotes the Fermi 
temperature.[1] Different from a degenerate atomic gas, the 
degenerate molecular Fermi gas is unstable due to its two-body loss, 
which originates from the chemical reaction.


In a homogeneous system, the behavior is quantitatively described 
by the two-body loss coefficient :


.


Since in a harmonically trapped system, a global density is not 
naturally defined, experiments conventionally, fit the loss coefficient 

 using


,


where  and  are the in-situ average density and temperature 
measured from the ballistic expansion process, respectively.

At high temperatures,  is expected to be constant based on the 
Bethe-Wigner threshold law for p-wave collisions. Interestingly, a 
suppression in the deep degenerate regime was observed.

Several works [2–3] attempted to explain this intriguing behavior but 
convincing agreement with the experiment has not yet been yielded.
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Ground-state KRb polar molecules have been cooled to quantum 
degeneracy. The inelastic collision between two molecules, due to 
chemical reactions, gives rise to loss over time. Below the Fermi 
temperature, a surprising suppression of the loss rate was observed 
experimentally. An explanation is currently lacking, even for the 
seemingly “simple” model of a normal-phase dilute weakly-
interacting single-component Fermi gas. Typically, more than one 
microscopic parameter is needed to describe interactions between 
identical fermions. Nevertheless, here, we identify a single 
relevant thermodynamic intensive microscopic parameter, the p-
wave scattering volume, and its corresponding thermodynamic 
extensive variable, the contact, and develop a unified statistical 
mechanics framework. Using the framework, we obtain the 
temperature-dependent contact, and, from it, the normal-phase loss 
rate. Our work reproduces the measured loss rate of the ultracold 
reactive KRb molecular gas for all experimentally accessible 
temperatures without adjustable parameters.

Relation between two-body loss 
and p-wave contact 

By integrating out the products as well as intermediate four-body 
complexes, a single-component Fermi gas with two-body loss can be 
described by a non-Hermitian Hamiltonian with a complex 
interaction








The Hamiltonian suggests the Lindblad jump operator 





From the Lindblad master equation:  .


In the weakly interacting limit, the p-wave phase shift 

 almost disappear, thus , 

. For the homogeneous system:


 


where  is the p-wave contact conjugate to the scattering volume . 
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Homogeneous two-body loss 
coefficient

At high temperatures, the thermodynamics of the system can be 
described by the virial expansion up to second order, which 
yields:


.


In the deep degenerate regime, the system is described by p-
wave Fermi liquid theory [4], yielding








The behavior in the intermediate regime can be obtained by 
performing a smooth interpolation between the two limits, 
because there is no phase transition in this temperature regime.
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Local density approximation: 
two-body loss coefficient of 
harmonically trapped cloud

In analogy to the homogeneous system and following the usual 
convention of the experiment [1], we define the total loss 
coefficient  for the harmonically trapped system to be





Because the “volume”  is no longer fixed,  separates 
naturally into two contributionss: 
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Fit the experiment
1)  at , but not in the degenerate 
regime. Using this fact, we fit  from a 
previous high-temperature experiment [5].


2) For the convenience of data processing, most experiments 
assume a classical profile of the cloud


,


which constraints the form of  to .


We can determine  using   and :


,


where the  is proportional to the temperature change(“anti-
evaporation”) reads 
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